Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-1+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
x^{2}+3x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 3 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)}}{2}
Pūrua 3.
x=\frac{-3±\sqrt{9+4}}{2}
Whakareatia -4 ki te -1.
x=\frac{-3±\sqrt{13}}{2}
Tāpiri 9 ki te 4.
x=\frac{\sqrt{13}-3}{2}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{13}}{2} ina he tāpiri te ±. Tāpiri -3 ki te \sqrt{13}.
x=\frac{-\sqrt{13}-3}{2}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{13}}{2} ina he tango te ±. Tango \sqrt{13} mai i -3.
x=\frac{\sqrt{13}-3}{2} x=\frac{-\sqrt{13}-3}{2}
Kua oti te whārite te whakatau.
3x-1+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
3x+x^{2}=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}+3x=1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=1+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=1+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+3x+\frac{9}{4}=\frac{13}{4}
Tāpiri 1 ki te \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{13}{4}
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=\frac{\sqrt{13}}{2} x+\frac{3}{2}=-\frac{\sqrt{13}}{2}
Whakarūnātia.
x=\frac{\sqrt{13}-3}{2} x=\frac{-\sqrt{13}-3}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.