Whakaoti mō x
x = \frac{\sqrt{265} + 17}{6} \approx 5.546470099
x=\frac{17-\sqrt{265}}{6}\approx 0.120196567
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-12x=4x+x-2
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-4.
3x^{2}-12x=5x-2
Pahekotia te 4x me x, ka 5x.
3x^{2}-12x-5x=-2
Tangohia te 5x mai i ngā taha e rua.
3x^{2}-17x=-2
Pahekotia te -12x me -5x, ka -17x.
3x^{2}-17x+2=0
Me tāpiri te 2 ki ngā taha e rua.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 3\times 2}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -17 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 3\times 2}}{2\times 3}
Pūrua -17.
x=\frac{-\left(-17\right)±\sqrt{289-12\times 2}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-17\right)±\sqrt{289-24}}{2\times 3}
Whakareatia -12 ki te 2.
x=\frac{-\left(-17\right)±\sqrt{265}}{2\times 3}
Tāpiri 289 ki te -24.
x=\frac{17±\sqrt{265}}{2\times 3}
Ko te tauaro o -17 ko 17.
x=\frac{17±\sqrt{265}}{6}
Whakareatia 2 ki te 3.
x=\frac{\sqrt{265}+17}{6}
Nā, me whakaoti te whārite x=\frac{17±\sqrt{265}}{6} ina he tāpiri te ±. Tāpiri 17 ki te \sqrt{265}.
x=\frac{17-\sqrt{265}}{6}
Nā, me whakaoti te whārite x=\frac{17±\sqrt{265}}{6} ina he tango te ±. Tango \sqrt{265} mai i 17.
x=\frac{\sqrt{265}+17}{6} x=\frac{17-\sqrt{265}}{6}
Kua oti te whārite te whakatau.
3x^{2}-12x=4x+x-2
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-4.
3x^{2}-12x=5x-2
Pahekotia te 4x me x, ka 5x.
3x^{2}-12x-5x=-2
Tangohia te 5x mai i ngā taha e rua.
3x^{2}-17x=-2
Pahekotia te -12x me -5x, ka -17x.
\frac{3x^{2}-17x}{3}=-\frac{2}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{17}{3}x=-\frac{2}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{17}{3}x+\left(-\frac{17}{6}\right)^{2}=-\frac{2}{3}+\left(-\frac{17}{6}\right)^{2}
Whakawehea te -\frac{17}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{17}{6}. Nā, tāpiria te pūrua o te -\frac{17}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{17}{3}x+\frac{289}{36}=-\frac{2}{3}+\frac{289}{36}
Pūruatia -\frac{17}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{17}{3}x+\frac{289}{36}=\frac{265}{36}
Tāpiri -\frac{2}{3} ki te \frac{289}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{17}{6}\right)^{2}=\frac{265}{36}
Tauwehea x^{2}-\frac{17}{3}x+\frac{289}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{6}\right)^{2}}=\sqrt{\frac{265}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{17}{6}=\frac{\sqrt{265}}{6} x-\frac{17}{6}=-\frac{\sqrt{265}}{6}
Whakarūnātia.
x=\frac{\sqrt{265}+17}{6} x=\frac{17-\sqrt{265}}{6}
Me tāpiri \frac{17}{6} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}