Whakaoti mō x
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-3x-\left(1+x\right)\left(-4\right)=2x^{2}-\left(1-x\right)\left(1+x\right)+4
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-1.
3x^{2}-3x-\left(-4-4x\right)=2x^{2}-\left(1-x\right)\left(1+x\right)+4
Whakamahia te āhuatanga tohatoha hei whakarea te 1+x ki te -4.
3x^{2}-3x+4+4x=2x^{2}-\left(1-x\right)\left(1+x\right)+4
Hei kimi i te tauaro o -4-4x, kimihia te tauaro o ia taurangi.
3x^{2}+x+4=2x^{2}-\left(1-x\right)\left(1+x\right)+4
Pahekotia te -3x me 4x, ka x.
3x^{2}+x+4=2x^{2}-\left(1-x^{2}\right)+4
Whakaarohia te \left(1-x\right)\left(1+x\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
3x^{2}+x+4=2x^{2}-1+x^{2}+4
Hei kimi i te tauaro o 1-x^{2}, kimihia te tauaro o ia taurangi.
3x^{2}+x+4=3x^{2}-1+4
Pahekotia te 2x^{2} me x^{2}, ka 3x^{2}.
3x^{2}+x+4=3x^{2}+3
Tāpirihia te -1 ki te 4, ka 3.
3x^{2}+x+4-3x^{2}=3
Tangohia te 3x^{2} mai i ngā taha e rua.
x+4=3
Pahekotia te 3x^{2} me -3x^{2}, ka 0.
x=3-4
Tangohia te 4 mai i ngā taha e rua.
x=-1
Tangohia te 4 i te 3, ka -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}