Whakaoti mō x
x=\frac{\sqrt{769}-25}{24}\approx 0.113785385
x=\frac{-\sqrt{769}-25}{24}\approx -2.197118719
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
3 x ( x - 1 ) + 4 x = \frac { 3 } { 4 } ( x + 1 ) - 6 x
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-3x+4x=\frac{3}{4}\left(x+1\right)-6x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-1.
3x^{2}+x=\frac{3}{4}\left(x+1\right)-6x
Pahekotia te -3x me 4x, ka x.
3x^{2}+x=\frac{3}{4}x+\frac{3}{4}-6x
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{4} ki te x+1.
3x^{2}+x=-\frac{21}{4}x+\frac{3}{4}
Pahekotia te \frac{3}{4}x me -6x, ka -\frac{21}{4}x.
3x^{2}+x+\frac{21}{4}x=\frac{3}{4}
Me tāpiri te \frac{21}{4}x ki ngā taha e rua.
3x^{2}+\frac{25}{4}x=\frac{3}{4}
Pahekotia te x me \frac{21}{4}x, ka \frac{25}{4}x.
3x^{2}+\frac{25}{4}x-\frac{3}{4}=0
Tangohia te \frac{3}{4} mai i ngā taha e rua.
x=\frac{-\frac{25}{4}±\sqrt{\left(\frac{25}{4}\right)^{2}-4\times 3\left(-\frac{3}{4}\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, \frac{25}{4} mō b, me -\frac{3}{4} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{25}{4}±\sqrt{\frac{625}{16}-4\times 3\left(-\frac{3}{4}\right)}}{2\times 3}
Pūruatia \frac{25}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{25}{4}±\sqrt{\frac{625}{16}-12\left(-\frac{3}{4}\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\frac{25}{4}±\sqrt{\frac{625}{16}+9}}{2\times 3}
Whakareatia -12 ki te -\frac{3}{4}.
x=\frac{-\frac{25}{4}±\sqrt{\frac{769}{16}}}{2\times 3}
Tāpiri \frac{625}{16} ki te 9.
x=\frac{-\frac{25}{4}±\frac{\sqrt{769}}{4}}{2\times 3}
Tuhia te pūtakerua o te \frac{769}{16}.
x=\frac{-\frac{25}{4}±\frac{\sqrt{769}}{4}}{6}
Whakareatia 2 ki te 3.
x=\frac{\sqrt{769}-25}{4\times 6}
Nā, me whakaoti te whārite x=\frac{-\frac{25}{4}±\frac{\sqrt{769}}{4}}{6} ina he tāpiri te ±. Tāpiri -\frac{25}{4} ki te \frac{\sqrt{769}}{4}.
x=\frac{\sqrt{769}-25}{24}
Whakawehe \frac{-25+\sqrt{769}}{4} ki te 6.
x=\frac{-\sqrt{769}-25}{4\times 6}
Nā, me whakaoti te whārite x=\frac{-\frac{25}{4}±\frac{\sqrt{769}}{4}}{6} ina he tango te ±. Tango \frac{\sqrt{769}}{4} mai i -\frac{25}{4}.
x=\frac{-\sqrt{769}-25}{24}
Whakawehe \frac{-25-\sqrt{769}}{4} ki te 6.
x=\frac{\sqrt{769}-25}{24} x=\frac{-\sqrt{769}-25}{24}
Kua oti te whārite te whakatau.
3x^{2}-3x+4x=\frac{3}{4}\left(x+1\right)-6x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-1.
3x^{2}+x=\frac{3}{4}\left(x+1\right)-6x
Pahekotia te -3x me 4x, ka x.
3x^{2}+x=\frac{3}{4}x+\frac{3}{4}-6x
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{4} ki te x+1.
3x^{2}+x=-\frac{21}{4}x+\frac{3}{4}
Pahekotia te \frac{3}{4}x me -6x, ka -\frac{21}{4}x.
3x^{2}+x+\frac{21}{4}x=\frac{3}{4}
Me tāpiri te \frac{21}{4}x ki ngā taha e rua.
3x^{2}+\frac{25}{4}x=\frac{3}{4}
Pahekotia te x me \frac{21}{4}x, ka \frac{25}{4}x.
\frac{3x^{2}+\frac{25}{4}x}{3}=\frac{\frac{3}{4}}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{\frac{25}{4}}{3}x=\frac{\frac{3}{4}}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+\frac{25}{12}x=\frac{\frac{3}{4}}{3}
Whakawehe \frac{25}{4} ki te 3.
x^{2}+\frac{25}{12}x=\frac{1}{4}
Whakawehe \frac{3}{4} ki te 3.
x^{2}+\frac{25}{12}x+\left(\frac{25}{24}\right)^{2}=\frac{1}{4}+\left(\frac{25}{24}\right)^{2}
Whakawehea te \frac{25}{12}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{25}{24}. Nā, tāpiria te pūrua o te \frac{25}{24} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{25}{12}x+\frac{625}{576}=\frac{1}{4}+\frac{625}{576}
Pūruatia \frac{25}{24} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{25}{12}x+\frac{625}{576}=\frac{769}{576}
Tāpiri \frac{1}{4} ki te \frac{625}{576} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{25}{24}\right)^{2}=\frac{769}{576}
Tauwehea x^{2}+\frac{25}{12}x+\frac{625}{576}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{24}\right)^{2}}=\sqrt{\frac{769}{576}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{25}{24}=\frac{\sqrt{769}}{24} x+\frac{25}{24}=-\frac{\sqrt{769}}{24}
Whakarūnātia.
x=\frac{\sqrt{769}-25}{24} x=\frac{-\sqrt{769}-25}{24}
Me tango \frac{25}{24} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}