Aromātai
5\left(x+2\right)
Whakaroha
5x+10
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}+6x-\left(x-1\right)-\left(x+3\right)\left(x-3\right)-2x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x+2.
3x^{2}+6x-x+1-\left(x+3\right)\left(x-3\right)-2x^{2}
Hei kimi i te tauaro o x-1, kimihia te tauaro o ia taurangi.
3x^{2}+5x+1-\left(x+3\right)\left(x-3\right)-2x^{2}
Pahekotia te 6x me -x, ka 5x.
3x^{2}+5x+1-\left(x^{2}-9\right)-2x^{2}
Whakaarohia te \left(x+3\right)\left(x-3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
3x^{2}+5x+1-x^{2}+9-2x^{2}
Hei kimi i te tauaro o x^{2}-9, kimihia te tauaro o ia taurangi.
2x^{2}+5x+1+9-2x^{2}
Pahekotia te 3x^{2} me -x^{2}, ka 2x^{2}.
2x^{2}+5x+10-2x^{2}
Tāpirihia te 1 ki te 9, ka 10.
5x+10
Pahekotia te 2x^{2} me -2x^{2}, ka 0.
3x^{2}+6x-\left(x-1\right)-\left(x+3\right)\left(x-3\right)-2x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x+2.
3x^{2}+6x-x+1-\left(x+3\right)\left(x-3\right)-2x^{2}
Hei kimi i te tauaro o x-1, kimihia te tauaro o ia taurangi.
3x^{2}+5x+1-\left(x+3\right)\left(x-3\right)-2x^{2}
Pahekotia te 6x me -x, ka 5x.
3x^{2}+5x+1-\left(x^{2}-9\right)-2x^{2}
Whakaarohia te \left(x+3\right)\left(x-3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
3x^{2}+5x+1-x^{2}+9-2x^{2}
Hei kimi i te tauaro o x^{2}-9, kimihia te tauaro o ia taurangi.
2x^{2}+5x+1+9-2x^{2}
Pahekotia te 3x^{2} me -x^{2}, ka 2x^{2}.
2x^{2}+5x+10-2x^{2}
Tāpirihia te 1 ki te 9, ka 10.
5x+10
Pahekotia te 2x^{2} me -2x^{2}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}