Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}+6x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x+2.
x\left(3x+6\right)=0
Tauwehea te x.
x=0 x=-2
Hei kimi otinga whārite, me whakaoti te x=0 me te 3x+6=0.
3x^{2}+6x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x+2.
x=\frac{-6±\sqrt{6^{2}}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 6 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±6}{2\times 3}
Tuhia te pūtakerua o te 6^{2}.
x=\frac{-6±6}{6}
Whakareatia 2 ki te 3.
x=\frac{0}{6}
Nā, me whakaoti te whārite x=\frac{-6±6}{6} ina he tāpiri te ±. Tāpiri -6 ki te 6.
x=0
Whakawehe 0 ki te 6.
x=-\frac{12}{6}
Nā, me whakaoti te whārite x=\frac{-6±6}{6} ina he tango te ±. Tango 6 mai i -6.
x=-2
Whakawehe -12 ki te 6.
x=0 x=-2
Kua oti te whārite te whakatau.
3x^{2}+6x=0
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x+2.
\frac{3x^{2}+6x}{3}=\frac{0}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{6}{3}x=\frac{0}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+2x=\frac{0}{3}
Whakawehe 6 ki te 3.
x^{2}+2x=0
Whakawehe 0 ki te 3.
x^{2}+2x+1^{2}=1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=1
Pūrua 1.
\left(x+1\right)^{2}=1
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=1 x+1=-1
Whakarūnātia.
x=0 x=-2
Me tango 1 mai i ngā taha e rua o te whārite.