Whakaoti mō x
x=-2
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}+3x-x=33-\left(x-3\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x+1.
3x^{2}+2x=33-\left(x-3\right)^{2}
Pahekotia te 3x me -x, ka 2x.
3x^{2}+2x=33-\left(x^{2}-6x+9\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
3x^{2}+2x=33-x^{2}+6x-9
Hei kimi i te tauaro o x^{2}-6x+9, kimihia te tauaro o ia taurangi.
3x^{2}+2x=24-x^{2}+6x
Tangohia te 9 i te 33, ka 24.
3x^{2}+2x-24=-x^{2}+6x
Tangohia te 24 mai i ngā taha e rua.
3x^{2}+2x-24+x^{2}=6x
Me tāpiri te x^{2} ki ngā taha e rua.
4x^{2}+2x-24=6x
Pahekotia te 3x^{2} me x^{2}, ka 4x^{2}.
4x^{2}+2x-24-6x=0
Tangohia te 6x mai i ngā taha e rua.
4x^{2}-4x-24=0
Pahekotia te 2x me -6x, ka -4x.
x^{2}-x-6=0
Whakawehea ngā taha e rua ki te 4.
a+b=-1 ab=1\left(-6\right)=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-6 2,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
1-6=-5 2-3=-1
Tātaihia te tapeke mō ia takirua.
a=-3 b=2
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(x^{2}-3x\right)+\left(2x-6\right)
Tuhia anō te x^{2}-x-6 hei \left(x^{2}-3x\right)+\left(2x-6\right).
x\left(x-3\right)+2\left(x-3\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-3\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=-2
Hei kimi otinga whārite, me whakaoti te x-3=0 me te x+2=0.
3x^{2}+3x-x=33-\left(x-3\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x+1.
3x^{2}+2x=33-\left(x-3\right)^{2}
Pahekotia te 3x me -x, ka 2x.
3x^{2}+2x=33-\left(x^{2}-6x+9\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
3x^{2}+2x=33-x^{2}+6x-9
Hei kimi i te tauaro o x^{2}-6x+9, kimihia te tauaro o ia taurangi.
3x^{2}+2x=24-x^{2}+6x
Tangohia te 9 i te 33, ka 24.
3x^{2}+2x-24=-x^{2}+6x
Tangohia te 24 mai i ngā taha e rua.
3x^{2}+2x-24+x^{2}=6x
Me tāpiri te x^{2} ki ngā taha e rua.
4x^{2}+2x-24=6x
Pahekotia te 3x^{2} me x^{2}, ka 4x^{2}.
4x^{2}+2x-24-6x=0
Tangohia te 6x mai i ngā taha e rua.
4x^{2}-4x-24=0
Pahekotia te 2x me -6x, ka -4x.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-24\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -4 mō b, me -24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-24\right)}}{2\times 4}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-16\left(-24\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-4\right)±\sqrt{16+384}}{2\times 4}
Whakareatia -16 ki te -24.
x=\frac{-\left(-4\right)±\sqrt{400}}{2\times 4}
Tāpiri 16 ki te 384.
x=\frac{-\left(-4\right)±20}{2\times 4}
Tuhia te pūtakerua o te 400.
x=\frac{4±20}{2\times 4}
Ko te tauaro o -4 ko 4.
x=\frac{4±20}{8}
Whakareatia 2 ki te 4.
x=\frac{24}{8}
Nā, me whakaoti te whārite x=\frac{4±20}{8} ina he tāpiri te ±. Tāpiri 4 ki te 20.
x=3
Whakawehe 24 ki te 8.
x=-\frac{16}{8}
Nā, me whakaoti te whārite x=\frac{4±20}{8} ina he tango te ±. Tango 20 mai i 4.
x=-2
Whakawehe -16 ki te 8.
x=3 x=-2
Kua oti te whārite te whakatau.
3x^{2}+3x-x=33-\left(x-3\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x+1.
3x^{2}+2x=33-\left(x-3\right)^{2}
Pahekotia te 3x me -x, ka 2x.
3x^{2}+2x=33-\left(x^{2}-6x+9\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
3x^{2}+2x=33-x^{2}+6x-9
Hei kimi i te tauaro o x^{2}-6x+9, kimihia te tauaro o ia taurangi.
3x^{2}+2x=24-x^{2}+6x
Tangohia te 9 i te 33, ka 24.
3x^{2}+2x+x^{2}=24+6x
Me tāpiri te x^{2} ki ngā taha e rua.
4x^{2}+2x=24+6x
Pahekotia te 3x^{2} me x^{2}, ka 4x^{2}.
4x^{2}+2x-6x=24
Tangohia te 6x mai i ngā taha e rua.
4x^{2}-4x=24
Pahekotia te 2x me -6x, ka -4x.
\frac{4x^{2}-4x}{4}=\frac{24}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{4}{4}\right)x=\frac{24}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-x=\frac{24}{4}
Whakawehe -4 ki te 4.
x^{2}-x=6
Whakawehe 24 ki te 4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=6+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{25}{4}
Tāpiri 6 ki te \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{25}{4}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{5}{2} x-\frac{1}{2}=-\frac{5}{2}
Whakarūnātia.
x=3 x=-2
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}