Whakaoti mō x
x=-1
x=\frac{1}{6}\approx 0.166666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x^{2}-3x+8x=1
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te 2x-1.
6x^{2}+5x=1
Pahekotia te -3x me 8x, ka 5x.
6x^{2}+5x-1=0
Tangohia te 1 mai i ngā taha e rua.
x=\frac{-5±\sqrt{5^{2}-4\times 6\left(-1\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 5 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 6\left(-1\right)}}{2\times 6}
Pūrua 5.
x=\frac{-5±\sqrt{25-24\left(-1\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-5±\sqrt{25+24}}{2\times 6}
Whakareatia -24 ki te -1.
x=\frac{-5±\sqrt{49}}{2\times 6}
Tāpiri 25 ki te 24.
x=\frac{-5±7}{2\times 6}
Tuhia te pūtakerua o te 49.
x=\frac{-5±7}{12}
Whakareatia 2 ki te 6.
x=\frac{2}{12}
Nā, me whakaoti te whārite x=\frac{-5±7}{12} ina he tāpiri te ±. Tāpiri -5 ki te 7.
x=\frac{1}{6}
Whakahekea te hautanga \frac{2}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{12}{12}
Nā, me whakaoti te whārite x=\frac{-5±7}{12} ina he tango te ±. Tango 7 mai i -5.
x=-1
Whakawehe -12 ki te 12.
x=\frac{1}{6} x=-1
Kua oti te whārite te whakatau.
6x^{2}-3x+8x=1
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te 2x-1.
6x^{2}+5x=1
Pahekotia te -3x me 8x, ka 5x.
\frac{6x^{2}+5x}{6}=\frac{1}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\frac{5}{6}x=\frac{1}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}+\frac{5}{6}x+\left(\frac{5}{12}\right)^{2}=\frac{1}{6}+\left(\frac{5}{12}\right)^{2}
Whakawehea te \frac{5}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{12}. Nā, tāpiria te pūrua o te \frac{5}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{6}x+\frac{25}{144}=\frac{1}{6}+\frac{25}{144}
Pūruatia \frac{5}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{6}x+\frac{25}{144}=\frac{49}{144}
Tāpiri \frac{1}{6} ki te \frac{25}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{12}\right)^{2}=\frac{49}{144}
Tauwehea x^{2}+\frac{5}{6}x+\frac{25}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{12}\right)^{2}}=\sqrt{\frac{49}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{12}=\frac{7}{12} x+\frac{5}{12}=-\frac{7}{12}
Whakarūnātia.
x=\frac{1}{6} x=-1
Me tango \frac{5}{12} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}