Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}\times 2=300
Whakareatia te x ki te x, ka x^{2}.
6x^{2}=300
Whakareatia te 3 ki te 2, ka 6.
x^{2}=\frac{300}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}=50
Whakawehea te 300 ki te 6, kia riro ko 50.
x=5\sqrt{2} x=-5\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3x^{2}\times 2=300
Whakareatia te x ki te x, ka x^{2}.
6x^{2}=300
Whakareatia te 3 ki te 2, ka 6.
6x^{2}-300=0
Tangohia te 300 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-300\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 0 mō b, me -300 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\left(-300\right)}}{2\times 6}
Pūrua 0.
x=\frac{0±\sqrt{-24\left(-300\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{0±\sqrt{7200}}{2\times 6}
Whakareatia -24 ki te -300.
x=\frac{0±60\sqrt{2}}{2\times 6}
Tuhia te pūtakerua o te 7200.
x=\frac{0±60\sqrt{2}}{12}
Whakareatia 2 ki te 6.
x=5\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±60\sqrt{2}}{12} ina he tāpiri te ±.
x=-5\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±60\sqrt{2}}{12} ina he tango te ±.
x=5\sqrt{2} x=-5\sqrt{2}
Kua oti te whārite te whakatau.