Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{4}+84-52x^{2}=0
Tangohia te 52x^{2} mai i ngā taha e rua.
3t^{2}-52t+84=0
Whakakapia te t mō te x^{2}.
t=\frac{-\left(-52\right)±\sqrt{\left(-52\right)^{2}-4\times 3\times 84}}{2\times 3}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 3 mō te a, te -52 mō te b, me te 84 mō te c i te ture pūrua.
t=\frac{52±4\sqrt{106}}{6}
Mahia ngā tātaitai.
t=\frac{2\sqrt{106}+26}{3} t=\frac{26-2\sqrt{106}}{3}
Whakaotia te whārite t=\frac{52±4\sqrt{106}}{6} ina he tōrunga te ±, ina he tōraro te ±.
x=\frac{\sqrt{\frac{8\sqrt{106}+104}{3}}}{2} x=-\frac{\sqrt{\frac{8\sqrt{106}+104}{3}}}{2} x=\frac{\sqrt{\frac{104-8\sqrt{106}}{3}}}{2} x=-\frac{\sqrt{\frac{104-8\sqrt{106}}{3}}}{2}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.