Tauwehe
\left(x-3\right)\left(x+1\right)\left(3x+1\right)
Aromātai
\left(x-3\right)\left(x+1\right)\left(3x+1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+1\right)\left(3x^{2}-8x-3\right)
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -3, ā, ka wehea e q te whakarea arahanga 3. Ko tetahi pūtake pērā ko -1. Tauwehea te pūrau mā te whakawehe mā te x+1.
a+b=-8 ab=3\left(-3\right)=-9
Whakaarohia te 3x^{2}-8x-3. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-9 3,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -9.
1-9=-8 3-3=0
Tātaihia te tapeke mō ia takirua.
a=-9 b=1
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(3x^{2}-9x\right)+\left(x-3\right)
Tuhia anō te 3x^{2}-8x-3 hei \left(3x^{2}-9x\right)+\left(x-3\right).
3x\left(x-3\right)+x-3
Whakatauwehea atu 3x i te 3x^{2}-9x.
\left(x-3\right)\left(3x+1\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x-3\right)\left(x+1\right)\left(3x+1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}