Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{3}-6x^{2}+5x-7-3x+2
Pahekotia te -2x^{2} me -4x^{2}, ka -6x^{2}.
3x^{3}-6x^{2}+2x-7+2
Pahekotia te 5x me -3x, ka 2x.
3x^{3}-6x^{2}+2x-5
Tāpirihia te -7 ki te 2, ka -5.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{3}-6x^{2}+5x-7-3x+2)
Pahekotia te -2x^{2} me -4x^{2}, ka -6x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{3}-6x^{2}+2x-7+2)
Pahekotia te 5x me -3x, ka 2x.
\frac{\mathrm{d}}{\mathrm{d}x}(3x^{3}-6x^{2}+2x-5)
Tāpirihia te -7 ki te 2, ka -5.
3\times 3x^{3-1}+2\left(-6\right)x^{2-1}+2x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
9x^{3-1}+2\left(-6\right)x^{2-1}+2x^{1-1}
Whakareatia 3 ki te 3.
9x^{2}+2\left(-6\right)x^{2-1}+2x^{1-1}
Tango 1 mai i 3.
9x^{2}-12x^{2-1}+2x^{1-1}
Whakareatia 2 ki te -6.
9x^{2}-12x^{1}+2x^{1-1}
Tango 1 mai i 2.
9x^{2}-12x^{1}+2x^{0}
Tango 1 mai i 1.
9x^{2}-12x+2x^{0}
Mō tētahi kupu t, t^{1}=t.
9x^{2}-12x+2\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
9x^{2}-12x+2
Mō tētahi kupu t, t\times 1=t me 1t=t.