Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

±\frac{1}{3},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -1, ā, ka wehea e q te whakarea arahanga 3. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-\frac{1}{3}
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+x-1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 3x^{3}+4x^{2}-2x-1 ki te 3\left(x+\frac{1}{3}\right)=3x+1, kia riro ko x^{2}+x-1. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\left(-1\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 1 mō te b, me te -1 mō te c i te ture pūrua.
x=\frac{-1±\sqrt{5}}{2}
Mahia ngā tātaitai.
x=\frac{-\sqrt{5}-1}{2} x=\frac{\sqrt{5}-1}{2}
Whakaotia te whārite x^{2}+x-1=0 ina he tōrunga te ±, ina he tōraro te ±.
x=-\frac{1}{3} x=\frac{-\sqrt{5}-1}{2} x=\frac{\sqrt{5}-1}{2}
Rārangitia ngā otinga katoa i kitea.