Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}=7+8
Me tāpiri te 8 ki ngā taha e rua.
3x^{2}=15
Tāpirihia te 7 ki te 8, ka 15.
x^{2}=\frac{15}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=5
Whakawehea te 15 ki te 3, kia riro ko 5.
x=\sqrt{5} x=-\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3x^{2}-8-7=0
Tangohia te 7 mai i ngā taha e rua.
3x^{2}-15=0
Tangohia te 7 i te -8, ka -15.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-15\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-15\right)}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\left(-15\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{180}}{2\times 3}
Whakareatia -12 ki te -15.
x=\frac{0±6\sqrt{5}}{2\times 3}
Tuhia te pūtakerua o te 180.
x=\frac{0±6\sqrt{5}}{6}
Whakareatia 2 ki te 3.
x=\sqrt{5}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{5}}{6} ina he tāpiri te ±.
x=-\sqrt{5}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{5}}{6} ina he tango te ±.
x=\sqrt{5} x=-\sqrt{5}
Kua oti te whārite te whakatau.