Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}-7x-6+3x=-2
Me tāpiri te 3x ki ngā taha e rua.
3x^{2}-4x-6=-2
Pahekotia te -7x me 3x, ka -4x.
3x^{2}-4x-6+2=0
Me tāpiri te 2 ki ngā taha e rua.
3x^{2}-4x-4=0
Tāpirihia te -6 ki te 2, ka -4.
a+b=-4 ab=3\left(-4\right)=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=-6 b=2
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(3x^{2}-6x\right)+\left(2x-4\right)
Tuhia anō te 3x^{2}-4x-4 hei \left(3x^{2}-6x\right)+\left(2x-4\right).
3x\left(x-2\right)+2\left(x-2\right)
Tauwehea te 3x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-2\right)\left(3x+2\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-\frac{2}{3}
Hei kimi otinga whārite, me whakaoti te x-2=0 me te 3x+2=0.
3x^{2}-7x-6+3x=-2
Me tāpiri te 3x ki ngā taha e rua.
3x^{2}-4x-6=-2
Pahekotia te -7x me 3x, ka -4x.
3x^{2}-4x-6+2=0
Me tāpiri te 2 ki ngā taha e rua.
3x^{2}-4x-4=0
Tāpirihia te -6 ki te 2, ka -4.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-4\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -4 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3\left(-4\right)}}{2\times 3}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-12\left(-4\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2\times 3}
Whakareatia -12 ki te -4.
x=\frac{-\left(-4\right)±\sqrt{64}}{2\times 3}
Tāpiri 16 ki te 48.
x=\frac{-\left(-4\right)±8}{2\times 3}
Tuhia te pūtakerua o te 64.
x=\frac{4±8}{2\times 3}
Ko te tauaro o -4 ko 4.
x=\frac{4±8}{6}
Whakareatia 2 ki te 3.
x=\frac{12}{6}
Nā, me whakaoti te whārite x=\frac{4±8}{6} ina he tāpiri te ±. Tāpiri 4 ki te 8.
x=2
Whakawehe 12 ki te 6.
x=-\frac{4}{6}
Nā, me whakaoti te whārite x=\frac{4±8}{6} ina he tango te ±. Tango 8 mai i 4.
x=-\frac{2}{3}
Whakahekea te hautanga \frac{-4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=2 x=-\frac{2}{3}
Kua oti te whārite te whakatau.
3x^{2}-7x-6+3x=-2
Me tāpiri te 3x ki ngā taha e rua.
3x^{2}-4x-6=-2
Pahekotia te -7x me 3x, ka -4x.
3x^{2}-4x=-2+6
Me tāpiri te 6 ki ngā taha e rua.
3x^{2}-4x=4
Tāpirihia te -2 ki te 6, ka 4.
\frac{3x^{2}-4x}{3}=\frac{4}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{4}{3}x=\frac{4}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\frac{4}{3}+\left(-\frac{2}{3}\right)^{2}
Whakawehea te -\frac{4}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2}{3}. Nā, tāpiria te pūrua o te -\frac{2}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{4}{3}+\frac{4}{9}
Pūruatia -\frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{16}{9}
Tāpiri \frac{4}{3} ki te \frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{2}{3}\right)^{2}=\frac{16}{9}
Tauwehea x^{2}-\frac{4}{3}x+\frac{4}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{2}{3}=\frac{4}{3} x-\frac{2}{3}=-\frac{4}{3}
Whakarūnātia.
x=2 x=-\frac{2}{3}
Me tāpiri \frac{2}{3} ki ngā taha e rua o te whārite.