Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}=11+7
Me tāpiri te 7 ki ngā taha e rua.
3x^{2}=18
Tāpirihia te 11 ki te 7, ka 18.
x^{2}=\frac{18}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=6
Whakawehea te 18 ki te 3, kia riro ko 6.
x=\sqrt{6} x=-\sqrt{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3x^{2}-7-11=0
Tangohia te 11 mai i ngā taha e rua.
3x^{2}-18=0
Tangohia te 11 i te -7, ka -18.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-18\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-18\right)}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\left(-18\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{216}}{2\times 3}
Whakareatia -12 ki te -18.
x=\frac{0±6\sqrt{6}}{2\times 3}
Tuhia te pūtakerua o te 216.
x=\frac{0±6\sqrt{6}}{6}
Whakareatia 2 ki te 3.
x=\sqrt{6}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{6}}{6} ina he tāpiri te ±.
x=-\sqrt{6}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{6}}{6} ina he tango te ±.
x=\sqrt{6} x=-\sqrt{6}
Kua oti te whārite te whakatau.