Tauwehe
3\left(x-1\right)^{2}
Aromātai
3\left(x-1\right)^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(x^{2}-2x+1\right)
Tauwehea te 3.
\left(x-1\right)^{2}
Whakaarohia te x^{2}-2x+1. Whakamahia te tikanga tātai pūrua pā, a^{2}-2ab+b^{2}=\left(a-b\right)^{2}, ina a=x, ina b=1.
3\left(x-1\right)^{2}
Me tuhi anō te kīanga whakatauwehe katoa.
factor(3x^{2}-6x+3)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(3,-6,3)=3
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
3\left(x^{2}-2x+1\right)
Tauwehea te 3.
3\left(x-1\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
3x^{2}-6x+3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\times 3}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 3\times 3}}{2\times 3}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-12\times 3}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2\times 3}
Whakareatia -12 ki te 3.
x=\frac{-\left(-6\right)±\sqrt{0}}{2\times 3}
Tāpiri 36 ki te -36.
x=\frac{-\left(-6\right)±0}{2\times 3}
Tuhia te pūtakerua o te 0.
x=\frac{6±0}{2\times 3}
Ko te tauaro o -6 ko 6.
x=\frac{6±0}{6}
Whakareatia 2 ki te 3.
3x^{2}-6x+3=3\left(x-1\right)\left(x-1\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1 mō te x_{1} me te 1 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}