Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}-56+2x=0
Me tāpiri te 2x ki ngā taha e rua.
3x^{2}+2x-56=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=2 ab=3\left(-56\right)=-168
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx-56. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,168 -2,84 -3,56 -4,42 -6,28 -7,24 -8,21 -12,14
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -168.
-1+168=167 -2+84=82 -3+56=53 -4+42=38 -6+28=22 -7+24=17 -8+21=13 -12+14=2
Tātaihia te tapeke mō ia takirua.
a=-12 b=14
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(3x^{2}-12x\right)+\left(14x-56\right)
Tuhia anō te 3x^{2}+2x-56 hei \left(3x^{2}-12x\right)+\left(14x-56\right).
3x\left(x-4\right)+14\left(x-4\right)
Tauwehea te 3x i te tuatahi me te 14 i te rōpū tuarua.
\left(x-4\right)\left(3x+14\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=-\frac{14}{3}
Hei kimi otinga whārite, me whakaoti te x-4=0 me te 3x+14=0.
3x^{2}-56+2x=0
Me tāpiri te 2x ki ngā taha e rua.
3x^{2}+2x-56=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\times 3\left(-56\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 2 mō b, me -56 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 3\left(-56\right)}}{2\times 3}
Pūrua 2.
x=\frac{-2±\sqrt{4-12\left(-56\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-2±\sqrt{4+672}}{2\times 3}
Whakareatia -12 ki te -56.
x=\frac{-2±\sqrt{676}}{2\times 3}
Tāpiri 4 ki te 672.
x=\frac{-2±26}{2\times 3}
Tuhia te pūtakerua o te 676.
x=\frac{-2±26}{6}
Whakareatia 2 ki te 3.
x=\frac{24}{6}
Nā, me whakaoti te whārite x=\frac{-2±26}{6} ina he tāpiri te ±. Tāpiri -2 ki te 26.
x=4
Whakawehe 24 ki te 6.
x=-\frac{28}{6}
Nā, me whakaoti te whārite x=\frac{-2±26}{6} ina he tango te ±. Tango 26 mai i -2.
x=-\frac{14}{3}
Whakahekea te hautanga \frac{-28}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=4 x=-\frac{14}{3}
Kua oti te whārite te whakatau.
3x^{2}-56+2x=0
Me tāpiri te 2x ki ngā taha e rua.
3x^{2}+2x=56
Me tāpiri te 56 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{3x^{2}+2x}{3}=\frac{56}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{2}{3}x=\frac{56}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{56}{3}+\left(\frac{1}{3}\right)^{2}
Whakawehea te \frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{3}. Nā, tāpiria te pūrua o te \frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{56}{3}+\frac{1}{9}
Pūruatia \frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{169}{9}
Tāpiri \frac{56}{3} ki te \frac{1}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{3}\right)^{2}=\frac{169}{9}
Tauwehea x^{2}+\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{169}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{3}=\frac{13}{3} x+\frac{1}{3}=-\frac{13}{3}
Whakarūnātia.
x=4 x=-\frac{14}{3}
Me tango \frac{1}{3} mai i ngā taha e rua o te whārite.