Whakaoti mō x
x=\frac{\sqrt{39}}{3}+6\approx 8.081665999
x=-\frac{\sqrt{39}}{3}+6\approx 3.918334001
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-36x+95=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 3\times 95}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -36 mō b, me 95 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 3\times 95}}{2\times 3}
Pūrua -36.
x=\frac{-\left(-36\right)±\sqrt{1296-12\times 95}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-36\right)±\sqrt{1296-1140}}{2\times 3}
Whakareatia -12 ki te 95.
x=\frac{-\left(-36\right)±\sqrt{156}}{2\times 3}
Tāpiri 1296 ki te -1140.
x=\frac{-\left(-36\right)±2\sqrt{39}}{2\times 3}
Tuhia te pūtakerua o te 156.
x=\frac{36±2\sqrt{39}}{2\times 3}
Ko te tauaro o -36 ko 36.
x=\frac{36±2\sqrt{39}}{6}
Whakareatia 2 ki te 3.
x=\frac{2\sqrt{39}+36}{6}
Nā, me whakaoti te whārite x=\frac{36±2\sqrt{39}}{6} ina he tāpiri te ±. Tāpiri 36 ki te 2\sqrt{39}.
x=\frac{\sqrt{39}}{3}+6
Whakawehe 36+2\sqrt{39} ki te 6.
x=\frac{36-2\sqrt{39}}{6}
Nā, me whakaoti te whārite x=\frac{36±2\sqrt{39}}{6} ina he tango te ±. Tango 2\sqrt{39} mai i 36.
x=-\frac{\sqrt{39}}{3}+6
Whakawehe 36-2\sqrt{39} ki te 6.
x=\frac{\sqrt{39}}{3}+6 x=-\frac{\sqrt{39}}{3}+6
Kua oti te whārite te whakatau.
3x^{2}-36x+95=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}-36x+95-95=-95
Me tango 95 mai i ngā taha e rua o te whārite.
3x^{2}-36x=-95
Mā te tango i te 95 i a ia ake anō ka toe ko te 0.
\frac{3x^{2}-36x}{3}=-\frac{95}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\left(-\frac{36}{3}\right)x=-\frac{95}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-12x=-\frac{95}{3}
Whakawehe -36 ki te 3.
x^{2}-12x+\left(-6\right)^{2}=-\frac{95}{3}+\left(-6\right)^{2}
Whakawehea te -12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -6. Nā, tāpiria te pūrua o te -6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-12x+36=-\frac{95}{3}+36
Pūrua -6.
x^{2}-12x+36=\frac{13}{3}
Tāpiri -\frac{95}{3} ki te 36.
\left(x-6\right)^{2}=\frac{13}{3}
Tauwehea x^{2}-12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{\frac{13}{3}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-6=\frac{\sqrt{39}}{3} x-6=-\frac{\sqrt{39}}{3}
Whakarūnātia.
x=\frac{\sqrt{39}}{3}+6 x=-\frac{\sqrt{39}}{3}+6
Me tāpiri 6 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}