Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(x^{2}-11x+24\right)
Tauwehea te 3.
a+b=-11 ab=1\times 24=24
Whakaarohia te x^{2}-11x+24. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+24. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-24 -2,-12 -3,-8 -4,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Tātaihia te tapeke mō ia takirua.
a=-8 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(x^{2}-8x\right)+\left(-3x+24\right)
Tuhia anō te x^{2}-11x+24 hei \left(x^{2}-8x\right)+\left(-3x+24\right).
x\left(x-8\right)-3\left(x-8\right)
Tauwehea te x i te tuatahi me te -3 i te rōpū tuarua.
\left(x-8\right)\left(x-3\right)
Whakatauwehea atu te kīanga pātahi x-8 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(x-8\right)\left(x-3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
3x^{2}-33x+72=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 3\times 72}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-33\right)±\sqrt{1089-4\times 3\times 72}}{2\times 3}
Pūrua -33.
x=\frac{-\left(-33\right)±\sqrt{1089-12\times 72}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-33\right)±\sqrt{1089-864}}{2\times 3}
Whakareatia -12 ki te 72.
x=\frac{-\left(-33\right)±\sqrt{225}}{2\times 3}
Tāpiri 1089 ki te -864.
x=\frac{-\left(-33\right)±15}{2\times 3}
Tuhia te pūtakerua o te 225.
x=\frac{33±15}{2\times 3}
Ko te tauaro o -33 ko 33.
x=\frac{33±15}{6}
Whakareatia 2 ki te 3.
x=\frac{48}{6}
Nā, me whakaoti te whārite x=\frac{33±15}{6} ina he tāpiri te ±. Tāpiri 33 ki te 15.
x=8
Whakawehe 48 ki te 6.
x=\frac{18}{6}
Nā, me whakaoti te whārite x=\frac{33±15}{6} ina he tango te ±. Tango 15 mai i 33.
x=3
Whakawehe 18 ki te 6.
3x^{2}-33x+72=3\left(x-8\right)\left(x-3\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 8 mō te x_{1} me te 3 mō te x_{2}.