Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}-252x+5360=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-252\right)±\sqrt{\left(-252\right)^{2}-4\times 3\times 5360}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -252 mō b, me 5360 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-252\right)±\sqrt{63504-4\times 3\times 5360}}{2\times 3}
Pūrua -252.
x=\frac{-\left(-252\right)±\sqrt{63504-12\times 5360}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-252\right)±\sqrt{63504-64320}}{2\times 3}
Whakareatia -12 ki te 5360.
x=\frac{-\left(-252\right)±\sqrt{-816}}{2\times 3}
Tāpiri 63504 ki te -64320.
x=\frac{-\left(-252\right)±4\sqrt{51}i}{2\times 3}
Tuhia te pūtakerua o te -816.
x=\frac{252±4\sqrt{51}i}{2\times 3}
Ko te tauaro o -252 ko 252.
x=\frac{252±4\sqrt{51}i}{6}
Whakareatia 2 ki te 3.
x=\frac{252+4\sqrt{51}i}{6}
Nā, me whakaoti te whārite x=\frac{252±4\sqrt{51}i}{6} ina he tāpiri te ±. Tāpiri 252 ki te 4i\sqrt{51}.
x=\frac{2\sqrt{51}i}{3}+42
Whakawehe 252+4i\sqrt{51} ki te 6.
x=\frac{-4\sqrt{51}i+252}{6}
Nā, me whakaoti te whārite x=\frac{252±4\sqrt{51}i}{6} ina he tango te ±. Tango 4i\sqrt{51} mai i 252.
x=-\frac{2\sqrt{51}i}{3}+42
Whakawehe 252-4i\sqrt{51} ki te 6.
x=\frac{2\sqrt{51}i}{3}+42 x=-\frac{2\sqrt{51}i}{3}+42
Kua oti te whārite te whakatau.
3x^{2}-252x+5360=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}-252x+5360-5360=-5360
Me tango 5360 mai i ngā taha e rua o te whārite.
3x^{2}-252x=-5360
Mā te tango i te 5360 i a ia ake anō ka toe ko te 0.
\frac{3x^{2}-252x}{3}=-\frac{5360}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\left(-\frac{252}{3}\right)x=-\frac{5360}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-84x=-\frac{5360}{3}
Whakawehe -252 ki te 3.
x^{2}-84x+\left(-42\right)^{2}=-\frac{5360}{3}+\left(-42\right)^{2}
Whakawehea te -84, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -42. Nā, tāpiria te pūrua o te -42 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-84x+1764=-\frac{5360}{3}+1764
Pūrua -42.
x^{2}-84x+1764=-\frac{68}{3}
Tāpiri -\frac{5360}{3} ki te 1764.
\left(x-42\right)^{2}=-\frac{68}{3}
Tauwehea x^{2}-84x+1764. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-42\right)^{2}}=\sqrt{-\frac{68}{3}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-42=\frac{2\sqrt{51}i}{3} x-42=-\frac{2\sqrt{51}i}{3}
Whakarūnātia.
x=\frac{2\sqrt{51}i}{3}+42 x=-\frac{2\sqrt{51}i}{3}+42
Me tāpiri 42 ki ngā taha e rua o te whārite.