Tauwehe
3\left(x-6\right)\left(x-2\right)
Aromātai
3\left(x-6\right)\left(x-2\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(x^{2}-8x+12\right)
Tauwehea te 3.
a+b=-8 ab=1\times 12=12
Whakaarohia te x^{2}-8x+12. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-12 -2,-6 -3,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
-1-12=-13 -2-6=-8 -3-4=-7
Tātaihia te tapeke mō ia takirua.
a=-6 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(x^{2}-6x\right)+\left(-2x+12\right)
Tuhia anō te x^{2}-8x+12 hei \left(x^{2}-6x\right)+\left(-2x+12\right).
x\left(x-6\right)-2\left(x-6\right)
Tauwehea te x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-6\right)\left(x-2\right)
Whakatauwehea atu te kīanga pātahi x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(x-6\right)\left(x-2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
3x^{2}-24x+36=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 3\times 36}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 3\times 36}}{2\times 3}
Pūrua -24.
x=\frac{-\left(-24\right)±\sqrt{576-12\times 36}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-24\right)±\sqrt{576-432}}{2\times 3}
Whakareatia -12 ki te 36.
x=\frac{-\left(-24\right)±\sqrt{144}}{2\times 3}
Tāpiri 576 ki te -432.
x=\frac{-\left(-24\right)±12}{2\times 3}
Tuhia te pūtakerua o te 144.
x=\frac{24±12}{2\times 3}
Ko te tauaro o -24 ko 24.
x=\frac{24±12}{6}
Whakareatia 2 ki te 3.
x=\frac{36}{6}
Nā, me whakaoti te whārite x=\frac{24±12}{6} ina he tāpiri te ±. Tāpiri 24 ki te 12.
x=6
Whakawehe 36 ki te 6.
x=\frac{12}{6}
Nā, me whakaoti te whārite x=\frac{24±12}{6} ina he tango te ±. Tango 12 mai i 24.
x=2
Whakawehe 12 ki te 6.
3x^{2}-24x+36=3\left(x-6\right)\left(x-2\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 6 mō te x_{1} me te 2 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}