Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}=21
Me tāpiri te 21 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{21}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=7
Whakawehea te 21 ki te 3, kia riro ko 7.
x=\sqrt{7} x=-\sqrt{7}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3x^{2}-21=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-21\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -21 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-21\right)}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\left(-21\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{252}}{2\times 3}
Whakareatia -12 ki te -21.
x=\frac{0±6\sqrt{7}}{2\times 3}
Tuhia te pūtakerua o te 252.
x=\frac{0±6\sqrt{7}}{6}
Whakareatia 2 ki te 3.
x=\sqrt{7}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{7}}{6} ina he tāpiri te ±.
x=-\sqrt{7}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{7}}{6} ina he tango te ±.
x=\sqrt{7} x=-\sqrt{7}
Kua oti te whārite te whakatau.