Tauwehe
\left(x-7\right)\left(3x+1\right)
Aromātai
\left(x-7\right)\left(3x+1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-20 ab=3\left(-7\right)=-21
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3x^{2}+ax+bx-7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-21 3,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -21.
1-21=-20 3-7=-4
Tātaihia te tapeke mō ia takirua.
a=-21 b=1
Ko te otinga te takirua ka hoatu i te tapeke -20.
\left(3x^{2}-21x\right)+\left(x-7\right)
Tuhia anō te 3x^{2}-20x-7 hei \left(3x^{2}-21x\right)+\left(x-7\right).
3x\left(x-7\right)+x-7
Whakatauwehea atu 3x i te 3x^{2}-21x.
\left(x-7\right)\left(3x+1\right)
Whakatauwehea atu te kīanga pātahi x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
3x^{2}-20x-7=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 3\left(-7\right)}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 3\left(-7\right)}}{2\times 3}
Pūrua -20.
x=\frac{-\left(-20\right)±\sqrt{400-12\left(-7\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-20\right)±\sqrt{400+84}}{2\times 3}
Whakareatia -12 ki te -7.
x=\frac{-\left(-20\right)±\sqrt{484}}{2\times 3}
Tāpiri 400 ki te 84.
x=\frac{-\left(-20\right)±22}{2\times 3}
Tuhia te pūtakerua o te 484.
x=\frac{20±22}{2\times 3}
Ko te tauaro o -20 ko 20.
x=\frac{20±22}{6}
Whakareatia 2 ki te 3.
x=\frac{42}{6}
Nā, me whakaoti te whārite x=\frac{20±22}{6} ina he tāpiri te ±. Tāpiri 20 ki te 22.
x=7
Whakawehe 42 ki te 6.
x=-\frac{2}{6}
Nā, me whakaoti te whārite x=\frac{20±22}{6} ina he tango te ±. Tango 22 mai i 20.
x=-\frac{1}{3}
Whakahekea te hautanga \frac{-2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
3x^{2}-20x-7=3\left(x-7\right)\left(x-\left(-\frac{1}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 7 mō te x_{1} me te -\frac{1}{3} mō te x_{2}.
3x^{2}-20x-7=3\left(x-7\right)\left(x+\frac{1}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
3x^{2}-20x-7=3\left(x-7\right)\times \frac{3x+1}{3}
Tāpiri \frac{1}{3} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
3x^{2}-20x-7=\left(x-7\right)\left(3x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 3 me te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}