Whakaoti mō x (complex solution)
x=\frac{1+\sqrt{11}i}{3}\approx 0.333333333+1.105541597i
x=\frac{-\sqrt{11}i+1}{3}\approx 0.333333333-1.105541597i
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-2x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\times 4}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -2 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3\times 4}}{2\times 3}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4-12\times 4}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-2\right)±\sqrt{4-48}}{2\times 3}
Whakareatia -12 ki te 4.
x=\frac{-\left(-2\right)±\sqrt{-44}}{2\times 3}
Tāpiri 4 ki te -48.
x=\frac{-\left(-2\right)±2\sqrt{11}i}{2\times 3}
Tuhia te pūtakerua o te -44.
x=\frac{2±2\sqrt{11}i}{2\times 3}
Ko te tauaro o -2 ko 2.
x=\frac{2±2\sqrt{11}i}{6}
Whakareatia 2 ki te 3.
x=\frac{2+2\sqrt{11}i}{6}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{11}i}{6} ina he tāpiri te ±. Tāpiri 2 ki te 2i\sqrt{11}.
x=\frac{1+\sqrt{11}i}{3}
Whakawehe 2+2i\sqrt{11} ki te 6.
x=\frac{-2\sqrt{11}i+2}{6}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{11}i}{6} ina he tango te ±. Tango 2i\sqrt{11} mai i 2.
x=\frac{-\sqrt{11}i+1}{3}
Whakawehe 2-2i\sqrt{11} ki te 6.
x=\frac{1+\sqrt{11}i}{3} x=\frac{-\sqrt{11}i+1}{3}
Kua oti te whārite te whakatau.
3x^{2}-2x+4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}-2x+4-4=-4
Me tango 4 mai i ngā taha e rua o te whārite.
3x^{2}-2x=-4
Mā te tango i te 4 i a ia ake anō ka toe ko te 0.
\frac{3x^{2}-2x}{3}=-\frac{4}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{2}{3}x=-\frac{4}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{4}{3}+\left(-\frac{1}{3}\right)^{2}
Whakawehea te -\frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{3}. Nā, tāpiria te pūrua o te -\frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{4}{3}+\frac{1}{9}
Pūruatia -\frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{11}{9}
Tāpiri -\frac{4}{3} ki te \frac{1}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{3}\right)^{2}=-\frac{11}{9}
Tauwehea x^{2}-\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{-\frac{11}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{3}=\frac{\sqrt{11}i}{3} x-\frac{1}{3}=-\frac{\sqrt{11}i}{3}
Whakarūnātia.
x=\frac{1+\sqrt{11}i}{3} x=\frac{-\sqrt{11}i+1}{3}
Me tāpiri \frac{1}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}