Whakaoti mō a
a=\frac{3x^{2}}{2x+3}
x\neq -\frac{3}{2}
Whakaoti mō x (complex solution)
x=\frac{\sqrt{a\left(a+9\right)}+a}{3}
x=\frac{-\sqrt{a\left(a+9\right)}+a}{3}
Whakaoti mō x
x=\frac{\sqrt{a\left(a+9\right)}+a}{3}
x=\frac{-\sqrt{a\left(a+9\right)}+a}{3}\text{, }a\leq -9\text{ or }a\geq 0
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2ax-3a=-3x^{2}
Tangohia te 3x^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(-2x-3\right)a=-3x^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\frac{\left(-2x-3\right)a}{-2x-3}=-\frac{3x^{2}}{-2x-3}
Whakawehea ngā taha e rua ki te -2x-3.
a=-\frac{3x^{2}}{-2x-3}
Mā te whakawehe ki te -2x-3 ka wetekia te whakareanga ki te -2x-3.
a=\frac{3x^{2}}{2x+3}
Whakawehe -3x^{2} ki te -2x-3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}