Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}-2-5x=0
Tangohia te 5x mai i ngā taha e rua.
3x^{2}-5x-2=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-5 ab=3\left(-2\right)=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-6 2,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
1-6=-5 2-3=-1
Tātaihia te tapeke mō ia takirua.
a=-6 b=1
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(3x^{2}-6x\right)+\left(x-2\right)
Tuhia anō te 3x^{2}-5x-2 hei \left(3x^{2}-6x\right)+\left(x-2\right).
3x\left(x-2\right)+x-2
Whakatauwehea atu 3x i te 3x^{2}-6x.
\left(x-2\right)\left(3x+1\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-\frac{1}{3}
Hei kimi otinga whārite, me whakaoti te x-2=0 me te 3x+1=0.
3x^{2}-2-5x=0
Tangohia te 5x mai i ngā taha e rua.
3x^{2}-5x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\left(-2\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -5 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 3\left(-2\right)}}{2\times 3}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-12\left(-2\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 3}
Whakareatia -12 ki te -2.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 3}
Tāpiri 25 ki te 24.
x=\frac{-\left(-5\right)±7}{2\times 3}
Tuhia te pūtakerua o te 49.
x=\frac{5±7}{2\times 3}
Ko te tauaro o -5 ko 5.
x=\frac{5±7}{6}
Whakareatia 2 ki te 3.
x=\frac{12}{6}
Nā, me whakaoti te whārite x=\frac{5±7}{6} ina he tāpiri te ±. Tāpiri 5 ki te 7.
x=2
Whakawehe 12 ki te 6.
x=-\frac{2}{6}
Nā, me whakaoti te whārite x=\frac{5±7}{6} ina he tango te ±. Tango 7 mai i 5.
x=-\frac{1}{3}
Whakahekea te hautanga \frac{-2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=2 x=-\frac{1}{3}
Kua oti te whārite te whakatau.
3x^{2}-2-5x=0
Tangohia te 5x mai i ngā taha e rua.
3x^{2}-5x=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{3x^{2}-5x}{3}=\frac{2}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{5}{3}x=\frac{2}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{5}{6}\right)^{2}
Whakawehea te -\frac{5}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{6}. Nā, tāpiria te pūrua o te -\frac{5}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{2}{3}+\frac{25}{36}
Pūruatia -\frac{5}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{49}{36}
Tāpiri \frac{2}{3} ki te \frac{25}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{6}\right)^{2}=\frac{49}{36}
Tauwehea x^{2}-\frac{5}{3}x+\frac{25}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{6}=\frac{7}{6} x-\frac{5}{6}=-\frac{7}{6}
Whakarūnātia.
x=2 x=-\frac{1}{3}
Me tāpiri \frac{5}{6} ki ngā taha e rua o te whārite.