Whakaoti mō x (complex solution)
x=3+8i
x=3-8i
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-18x+225=6
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
3x^{2}-18x+225-6=6-6
Me tango 6 mai i ngā taha e rua o te whārite.
3x^{2}-18x+225-6=0
Mā te tango i te 6 i a ia ake anō ka toe ko te 0.
3x^{2}-18x+219=0
Tango 6 mai i 225.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 3\times 219}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -18 mō b, me 219 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 3\times 219}}{2\times 3}
Pūrua -18.
x=\frac{-\left(-18\right)±\sqrt{324-12\times 219}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-18\right)±\sqrt{324-2628}}{2\times 3}
Whakareatia -12 ki te 219.
x=\frac{-\left(-18\right)±\sqrt{-2304}}{2\times 3}
Tāpiri 324 ki te -2628.
x=\frac{-\left(-18\right)±48i}{2\times 3}
Tuhia te pūtakerua o te -2304.
x=\frac{18±48i}{2\times 3}
Ko te tauaro o -18 ko 18.
x=\frac{18±48i}{6}
Whakareatia 2 ki te 3.
x=\frac{18+48i}{6}
Nā, me whakaoti te whārite x=\frac{18±48i}{6} ina he tāpiri te ±. Tāpiri 18 ki te 48i.
x=3+8i
Whakawehe 18+48i ki te 6.
x=\frac{18-48i}{6}
Nā, me whakaoti te whārite x=\frac{18±48i}{6} ina he tango te ±. Tango 48i mai i 18.
x=3-8i
Whakawehe 18-48i ki te 6.
x=3+8i x=3-8i
Kua oti te whārite te whakatau.
3x^{2}-18x+225=6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}-18x+225-225=6-225
Me tango 225 mai i ngā taha e rua o te whārite.
3x^{2}-18x=6-225
Mā te tango i te 225 i a ia ake anō ka toe ko te 0.
3x^{2}-18x=-219
Tango 225 mai i 6.
\frac{3x^{2}-18x}{3}=-\frac{219}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\left(-\frac{18}{3}\right)x=-\frac{219}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-6x=-\frac{219}{3}
Whakawehe -18 ki te 3.
x^{2}-6x=-73
Whakawehe -219 ki te 3.
x^{2}-6x+\left(-3\right)^{2}=-73+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=-73+9
Pūrua -3.
x^{2}-6x+9=-64
Tāpiri -73 ki te 9.
\left(x-3\right)^{2}=-64
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-64}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=8i x-3=-8i
Whakarūnātia.
x=3+8i x=3-8i
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}