Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(x^{2}-5x+6\right)
Tauwehea te 3.
a+b=-5 ab=1\times 6=6
Whakaarohia te x^{2}-5x+6. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-6 -2,-3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
-1-6=-7 -2-3=-5
Tātaihia te tapeke mō ia takirua.
a=-3 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(x^{2}-3x\right)+\left(-2x+6\right)
Tuhia anō te x^{2}-5x+6 hei \left(x^{2}-3x\right)+\left(-2x+6\right).
x\left(x-3\right)-2\left(x-3\right)
Tauwehea te x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-3\right)\left(x-2\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(x-3\right)\left(x-2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
3x^{2}-15x+18=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 3\times 18}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 3\times 18}}{2\times 3}
Pūrua -15.
x=\frac{-\left(-15\right)±\sqrt{225-12\times 18}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-15\right)±\sqrt{225-216}}{2\times 3}
Whakareatia -12 ki te 18.
x=\frac{-\left(-15\right)±\sqrt{9}}{2\times 3}
Tāpiri 225 ki te -216.
x=\frac{-\left(-15\right)±3}{2\times 3}
Tuhia te pūtakerua o te 9.
x=\frac{15±3}{2\times 3}
Ko te tauaro o -15 ko 15.
x=\frac{15±3}{6}
Whakareatia 2 ki te 3.
x=\frac{18}{6}
Nā, me whakaoti te whārite x=\frac{15±3}{6} ina he tāpiri te ±. Tāpiri 15 ki te 3.
x=3
Whakawehe 18 ki te 6.
x=\frac{12}{6}
Nā, me whakaoti te whārite x=\frac{15±3}{6} ina he tango te ±. Tango 3 mai i 15.
x=2
Whakawehe 12 ki te 6.
3x^{2}-15x+18=3\left(x-3\right)\left(x-2\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3 mō te x_{1} me te 2 mō te x_{2}.