Whakaoti mō x
x=\sqrt{2}+2\approx 3.414213562
x=2-\sqrt{2}\approx 0.585786438
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-12x+6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 6}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -12 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 3\times 6}}{2\times 3}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-12\times 6}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-12\right)±\sqrt{144-72}}{2\times 3}
Whakareatia -12 ki te 6.
x=\frac{-\left(-12\right)±\sqrt{72}}{2\times 3}
Tāpiri 144 ki te -72.
x=\frac{-\left(-12\right)±6\sqrt{2}}{2\times 3}
Tuhia te pūtakerua o te 72.
x=\frac{12±6\sqrt{2}}{2\times 3}
Ko te tauaro o -12 ko 12.
x=\frac{12±6\sqrt{2}}{6}
Whakareatia 2 ki te 3.
x=\frac{6\sqrt{2}+12}{6}
Nā, me whakaoti te whārite x=\frac{12±6\sqrt{2}}{6} ina he tāpiri te ±. Tāpiri 12 ki te 6\sqrt{2}.
x=\sqrt{2}+2
Whakawehe 12+6\sqrt{2} ki te 6.
x=\frac{12-6\sqrt{2}}{6}
Nā, me whakaoti te whārite x=\frac{12±6\sqrt{2}}{6} ina he tango te ±. Tango 6\sqrt{2} mai i 12.
x=2-\sqrt{2}
Whakawehe 12-6\sqrt{2} ki te 6.
x=\sqrt{2}+2 x=2-\sqrt{2}
Kua oti te whārite te whakatau.
3x^{2}-12x+6=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}-12x+6-6=-6
Me tango 6 mai i ngā taha e rua o te whārite.
3x^{2}-12x=-6
Mā te tango i te 6 i a ia ake anō ka toe ko te 0.
\frac{3x^{2}-12x}{3}=-\frac{6}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\left(-\frac{12}{3}\right)x=-\frac{6}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-4x=-\frac{6}{3}
Whakawehe -12 ki te 3.
x^{2}-4x=-2
Whakawehe -6 ki te 3.
x^{2}-4x+\left(-2\right)^{2}=-2+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-2+4
Pūrua -2.
x^{2}-4x+4=2
Tāpiri -2 ki te 4.
\left(x-2\right)^{2}=2
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=\sqrt{2} x-2=-\sqrt{2}
Whakarūnātia.
x=\sqrt{2}+2 x=2-\sqrt{2}
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}