Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}x-1+x\left(-2\right)=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
3x^{3}-1+x\left(-2\right)=0
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
3x^{3}-2x-1=0
Hurinahatia te whārite ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
±\frac{1}{3},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -1, ā, ka wehea e q te whakarea arahanga 3. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
3x^{2}+3x+1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 3x^{3}-2x-1 ki te x-1, kia riro ko 3x^{2}+3x+1. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-3±\sqrt{3^{2}-4\times 3\times 1}}{2\times 3}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 3 mō te a, te 3 mō te b, me te 1 mō te c i te ture pūrua.
x=\frac{-3±\sqrt{-3}}{6}
Mahia ngā tātaitai.
x=-\frac{\sqrt{3}i}{6}-\frac{1}{2} x=\frac{\sqrt{3}i}{6}-\frac{1}{2}
Whakaotia te whārite 3x^{2}+3x+1=0 ina he tōrunga te ±, ina he tōraro te ±.
x=1 x=-\frac{\sqrt{3}i}{6}-\frac{1}{2} x=\frac{\sqrt{3}i}{6}-\frac{1}{2}
Rārangitia ngā otinga katoa i kitea.
3x^{2}x-1+x\left(-2\right)=0
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
3x^{3}-1+x\left(-2\right)=0
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
3x^{3}-2x-1=0
Hurinahatia te whārite ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
±\frac{1}{3},±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -1, ā, ka wehea e q te whakarea arahanga 3. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
3x^{2}+3x+1=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te 3x^{3}-2x-1 ki te x-1, kia riro ko 3x^{2}+3x+1. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-3±\sqrt{3^{2}-4\times 3\times 1}}{2\times 3}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 3 mō te a, te 3 mō te b, me te 1 mō te c i te ture pūrua.
x=\frac{-3±\sqrt{-3}}{6}
Mahia ngā tātaitai.
x\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
x=1
Rārangitia ngā otinga katoa i kitea.