Whakaoti mō x
x=\frac{\sqrt{21}}{6}+\frac{3}{2}\approx 2.263762616
x=-\frac{\sqrt{21}}{6}+\frac{3}{2}\approx 0.736237384
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-9x=-5
Tangohia te 9x mai i ngā taha e rua.
3x^{2}-9x+5=0
Me tāpiri te 5 ki ngā taha e rua.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3\times 5}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -9 mō b, me 5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 3\times 5}}{2\times 3}
Pūrua -9.
x=\frac{-\left(-9\right)±\sqrt{81-12\times 5}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-9\right)±\sqrt{81-60}}{2\times 3}
Whakareatia -12 ki te 5.
x=\frac{-\left(-9\right)±\sqrt{21}}{2\times 3}
Tāpiri 81 ki te -60.
x=\frac{9±\sqrt{21}}{2\times 3}
Ko te tauaro o -9 ko 9.
x=\frac{9±\sqrt{21}}{6}
Whakareatia 2 ki te 3.
x=\frac{\sqrt{21}+9}{6}
Nā, me whakaoti te whārite x=\frac{9±\sqrt{21}}{6} ina he tāpiri te ±. Tāpiri 9 ki te \sqrt{21}.
x=\frac{\sqrt{21}}{6}+\frac{3}{2}
Whakawehe 9+\sqrt{21} ki te 6.
x=\frac{9-\sqrt{21}}{6}
Nā, me whakaoti te whārite x=\frac{9±\sqrt{21}}{6} ina he tango te ±. Tango \sqrt{21} mai i 9.
x=-\frac{\sqrt{21}}{6}+\frac{3}{2}
Whakawehe 9-\sqrt{21} ki te 6.
x=\frac{\sqrt{21}}{6}+\frac{3}{2} x=-\frac{\sqrt{21}}{6}+\frac{3}{2}
Kua oti te whārite te whakatau.
3x^{2}-9x=-5
Tangohia te 9x mai i ngā taha e rua.
\frac{3x^{2}-9x}{3}=-\frac{5}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\left(-\frac{9}{3}\right)x=-\frac{5}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-3x=-\frac{5}{3}
Whakawehe -9 ki te 3.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{5}{3}+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=-\frac{5}{3}+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{7}{12}
Tāpiri -\frac{5}{3} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{2}\right)^{2}=\frac{7}{12}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{7}{12}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{\sqrt{21}}{6} x-\frac{3}{2}=-\frac{\sqrt{21}}{6}
Whakarūnātia.
x=\frac{\sqrt{21}}{6}+\frac{3}{2} x=-\frac{\sqrt{21}}{6}+\frac{3}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}