Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=\frac{75}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=25
Whakawehea te 75 ki te 3, kia riro ko 25.
x^{2}-25=0
Tangohia te 25 mai i ngā taha e rua.
\left(x-5\right)\left(x+5\right)=0
Whakaarohia te x^{2}-25. Tuhia anō te x^{2}-25 hei x^{2}-5^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=5 x=-5
Hei kimi otinga whārite, me whakaoti te x-5=0 me te x+5=0.
x^{2}=\frac{75}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=25
Whakawehea te 75 ki te 3, kia riro ko 25.
x=5 x=-5
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}=\frac{75}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=25
Whakawehea te 75 ki te 3, kia riro ko 25.
x^{2}-25=0
Tangohia te 25 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-25\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-25\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{100}}{2}
Whakareatia -4 ki te -25.
x=\frac{0±10}{2}
Tuhia te pūtakerua o te 100.
x=5
Nā, me whakaoti te whārite x=\frac{0±10}{2} ina he tāpiri te ±. Whakawehe 10 ki te 2.
x=-5
Nā, me whakaoti te whārite x=\frac{0±10}{2} ina he tango te ±. Whakawehe -10 ki te 2.
x=5 x=-5
Kua oti te whārite te whakatau.