Whakaoti mō x
x=-1
x = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-4x=7
Tangohia te 4x mai i ngā taha e rua.
3x^{2}-4x-7=0
Tangohia te 7 mai i ngā taha e rua.
a+b=-4 ab=3\left(-7\right)=-21
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx-7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-21 3,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -21.
1-21=-20 3-7=-4
Tātaihia te tapeke mō ia takirua.
a=-7 b=3
Ko te otinga te takirua ka hoatu i te tapeke -4.
\left(3x^{2}-7x\right)+\left(3x-7\right)
Tuhia anō te 3x^{2}-4x-7 hei \left(3x^{2}-7x\right)+\left(3x-7\right).
x\left(3x-7\right)+3x-7
Whakatauwehea atu x i te 3x^{2}-7x.
\left(3x-7\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi 3x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{7}{3} x=-1
Hei kimi otinga whārite, me whakaoti te 3x-7=0 me te x+1=0.
3x^{2}-4x=7
Tangohia te 4x mai i ngā taha e rua.
3x^{2}-4x-7=0
Tangohia te 7 mai i ngā taha e rua.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-7\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -4 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3\left(-7\right)}}{2\times 3}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-12\left(-7\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-4\right)±\sqrt{16+84}}{2\times 3}
Whakareatia -12 ki te -7.
x=\frac{-\left(-4\right)±\sqrt{100}}{2\times 3}
Tāpiri 16 ki te 84.
x=\frac{-\left(-4\right)±10}{2\times 3}
Tuhia te pūtakerua o te 100.
x=\frac{4±10}{2\times 3}
Ko te tauaro o -4 ko 4.
x=\frac{4±10}{6}
Whakareatia 2 ki te 3.
x=\frac{14}{6}
Nā, me whakaoti te whārite x=\frac{4±10}{6} ina he tāpiri te ±. Tāpiri 4 ki te 10.
x=\frac{7}{3}
Whakahekea te hautanga \frac{14}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{6}{6}
Nā, me whakaoti te whārite x=\frac{4±10}{6} ina he tango te ±. Tango 10 mai i 4.
x=-1
Whakawehe -6 ki te 6.
x=\frac{7}{3} x=-1
Kua oti te whārite te whakatau.
3x^{2}-4x=7
Tangohia te 4x mai i ngā taha e rua.
\frac{3x^{2}-4x}{3}=\frac{7}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}-\frac{4}{3}x=\frac{7}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\frac{7}{3}+\left(-\frac{2}{3}\right)^{2}
Whakawehea te -\frac{4}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2}{3}. Nā, tāpiria te pūrua o te -\frac{2}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{7}{3}+\frac{4}{9}
Pūruatia -\frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{25}{9}
Tāpiri \frac{7}{3} ki te \frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{2}{3}\right)^{2}=\frac{25}{9}
Tauwehea x^{2}-\frac{4}{3}x+\frac{4}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{25}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{2}{3}=\frac{5}{3} x-\frac{2}{3}=-\frac{5}{3}
Whakarūnātia.
x=\frac{7}{3} x=-1
Me tāpiri \frac{2}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}