Whakaoti mō x
x=-10
x=20
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-30x=600
Tangohia te 30x mai i ngā taha e rua.
3x^{2}-30x-600=0
Tangohia te 600 mai i ngā taha e rua.
x^{2}-10x-200=0
Whakawehea ngā taha e rua ki te 3.
a+b=-10 ab=1\left(-200\right)=-200
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-200. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-200 2,-100 4,-50 5,-40 8,-25 10,-20
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -200.
1-200=-199 2-100=-98 4-50=-46 5-40=-35 8-25=-17 10-20=-10
Tātaihia te tapeke mō ia takirua.
a=-20 b=10
Ko te otinga te takirua ka hoatu i te tapeke -10.
\left(x^{2}-20x\right)+\left(10x-200\right)
Tuhia anō te x^{2}-10x-200 hei \left(x^{2}-20x\right)+\left(10x-200\right).
x\left(x-20\right)+10\left(x-20\right)
Tauwehea te x i te tuatahi me te 10 i te rōpū tuarua.
\left(x-20\right)\left(x+10\right)
Whakatauwehea atu te kīanga pātahi x-20 mā te whakamahi i te āhuatanga tātai tohatoha.
x=20 x=-10
Hei kimi otinga whārite, me whakaoti te x-20=0 me te x+10=0.
3x^{2}-30x=600
Tangohia te 30x mai i ngā taha e rua.
3x^{2}-30x-600=0
Tangohia te 600 mai i ngā taha e rua.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 3\left(-600\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -30 mō b, me -600 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 3\left(-600\right)}}{2\times 3}
Pūrua -30.
x=\frac{-\left(-30\right)±\sqrt{900-12\left(-600\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-30\right)±\sqrt{900+7200}}{2\times 3}
Whakareatia -12 ki te -600.
x=\frac{-\left(-30\right)±\sqrt{8100}}{2\times 3}
Tāpiri 900 ki te 7200.
x=\frac{-\left(-30\right)±90}{2\times 3}
Tuhia te pūtakerua o te 8100.
x=\frac{30±90}{2\times 3}
Ko te tauaro o -30 ko 30.
x=\frac{30±90}{6}
Whakareatia 2 ki te 3.
x=\frac{120}{6}
Nā, me whakaoti te whārite x=\frac{30±90}{6} ina he tāpiri te ±. Tāpiri 30 ki te 90.
x=20
Whakawehe 120 ki te 6.
x=-\frac{60}{6}
Nā, me whakaoti te whārite x=\frac{30±90}{6} ina he tango te ±. Tango 90 mai i 30.
x=-10
Whakawehe -60 ki te 6.
x=20 x=-10
Kua oti te whārite te whakatau.
3x^{2}-30x=600
Tangohia te 30x mai i ngā taha e rua.
\frac{3x^{2}-30x}{3}=\frac{600}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\left(-\frac{30}{3}\right)x=\frac{600}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}-10x=\frac{600}{3}
Whakawehe -30 ki te 3.
x^{2}-10x=200
Whakawehe 600 ki te 3.
x^{2}-10x+\left(-5\right)^{2}=200+\left(-5\right)^{2}
Whakawehea te -10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -5. Nā, tāpiria te pūrua o te -5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-10x+25=200+25
Pūrua -5.
x^{2}-10x+25=225
Tāpiri 200 ki te 25.
\left(x-5\right)^{2}=225
Tauwehea x^{2}-10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{225}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-5=15 x-5=-15
Whakarūnātia.
x=20 x=-10
Me tāpiri 5 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}