Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=\frac{15}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=5
Whakawehea te 15 ki te 3, kia riro ko 5.
x=\sqrt{5} x=-\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}=\frac{15}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=5
Whakawehea te 15 ki te 3, kia riro ko 5.
x^{2}-5=0
Tangohia te 5 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-5\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-5\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{20}}{2}
Whakareatia -4 ki te -5.
x=\frac{0±2\sqrt{5}}{2}
Tuhia te pūtakerua o te 20.
x=\sqrt{5}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{5}}{2} ina he tāpiri te ±.
x=-\sqrt{5}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{5}}{2} ina he tango te ±.
x=\sqrt{5} x=-\sqrt{5}
Kua oti te whārite te whakatau.