Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}+x-9=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\times 3\left(-9\right)}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1-4\times 3\left(-9\right)}}{2\times 3}
Pūrua 1.
x=\frac{-1±\sqrt{1-12\left(-9\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-1±\sqrt{1+108}}{2\times 3}
Whakareatia -12 ki te -9.
x=\frac{-1±\sqrt{109}}{2\times 3}
Tāpiri 1 ki te 108.
x=\frac{-1±\sqrt{109}}{6}
Whakareatia 2 ki te 3.
x=\frac{\sqrt{109}-1}{6}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{109}}{6} ina he tāpiri te ±. Tāpiri -1 ki te \sqrt{109}.
x=\frac{-\sqrt{109}-1}{6}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{109}}{6} ina he tango te ±. Tango \sqrt{109} mai i -1.
3x^{2}+x-9=3\left(x-\frac{\sqrt{109}-1}{6}\right)\left(x-\frac{-\sqrt{109}-1}{6}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-1+\sqrt{109}}{6} mō te x_{1} me te \frac{-1-\sqrt{109}}{6} mō te x_{2}.