Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=1 ab=3\left(-4\right)=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,12 -2,6 -3,4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
-1+12=11 -2+6=4 -3+4=1
Tātaihia te tapeke mō ia takirua.
a=-3 b=4
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(3x^{2}-3x\right)+\left(4x-4\right)
Tuhia anō te 3x^{2}+x-4 hei \left(3x^{2}-3x\right)+\left(4x-4\right).
3x\left(x-1\right)+4\left(x-1\right)
Tauwehea te 3x i te tuatahi me te 4 i te rōpū tuarua.
\left(x-1\right)\left(3x+4\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-\frac{4}{3}
Hei kimi otinga whārite, me whakaoti te x-1=0 me te 3x+4=0.
3x^{2}+x-4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\times 3\left(-4\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 1 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 3\left(-4\right)}}{2\times 3}
Pūrua 1.
x=\frac{-1±\sqrt{1-12\left(-4\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-1±\sqrt{1+48}}{2\times 3}
Whakareatia -12 ki te -4.
x=\frac{-1±\sqrt{49}}{2\times 3}
Tāpiri 1 ki te 48.
x=\frac{-1±7}{2\times 3}
Tuhia te pūtakerua o te 49.
x=\frac{-1±7}{6}
Whakareatia 2 ki te 3.
x=\frac{6}{6}
Nā, me whakaoti te whārite x=\frac{-1±7}{6} ina he tāpiri te ±. Tāpiri -1 ki te 7.
x=1
Whakawehe 6 ki te 6.
x=-\frac{8}{6}
Nā, me whakaoti te whārite x=\frac{-1±7}{6} ina he tango te ±. Tango 7 mai i -1.
x=-\frac{4}{3}
Whakahekea te hautanga \frac{-8}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=1 x=-\frac{4}{3}
Kua oti te whārite te whakatau.
3x^{2}+x-4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}+x-4-\left(-4\right)=-\left(-4\right)
Me tāpiri 4 ki ngā taha e rua o te whārite.
3x^{2}+x=-\left(-4\right)
Mā te tango i te -4 i a ia ake anō ka toe ko te 0.
3x^{2}+x=4
Tango -4 mai i 0.
\frac{3x^{2}+x}{3}=\frac{4}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{1}{3}x=\frac{4}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{4}{3}+\left(\frac{1}{6}\right)^{2}
Whakawehea te \frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{6}. Nā, tāpiria te pūrua o te \frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{4}{3}+\frac{1}{36}
Pūruatia \frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{49}{36}
Tāpiri \frac{4}{3} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{6}\right)^{2}=\frac{49}{36}
Tauwehea x^{2}+\frac{1}{3}x+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{6}=\frac{7}{6} x+\frac{1}{6}=-\frac{7}{6}
Whakarūnātia.
x=1 x=-\frac{4}{3}
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.