Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}+x=11
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
3x^{2}+x-11=11-11
Me tango 11 mai i ngā taha e rua o te whārite.
3x^{2}+x-11=0
Mā te tango i te 11 i a ia ake anō ka toe ko te 0.
x=\frac{-1±\sqrt{1^{2}-4\times 3\left(-11\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 1 mō b, me -11 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 3\left(-11\right)}}{2\times 3}
Pūrua 1.
x=\frac{-1±\sqrt{1-12\left(-11\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-1±\sqrt{1+132}}{2\times 3}
Whakareatia -12 ki te -11.
x=\frac{-1±\sqrt{133}}{2\times 3}
Tāpiri 1 ki te 132.
x=\frac{-1±\sqrt{133}}{6}
Whakareatia 2 ki te 3.
x=\frac{\sqrt{133}-1}{6}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{133}}{6} ina he tāpiri te ±. Tāpiri -1 ki te \sqrt{133}.
x=\frac{-\sqrt{133}-1}{6}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{133}}{6} ina he tango te ±. Tango \sqrt{133} mai i -1.
x=\frac{\sqrt{133}-1}{6} x=\frac{-\sqrt{133}-1}{6}
Kua oti te whārite te whakatau.
3x^{2}+x=11
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{3x^{2}+x}{3}=\frac{11}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{1}{3}x=\frac{11}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{11}{3}+\left(\frac{1}{6}\right)^{2}
Whakawehea te \frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{6}. Nā, tāpiria te pūrua o te \frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{11}{3}+\frac{1}{36}
Pūruatia \frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{133}{36}
Tāpiri \frac{11}{3} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{6}\right)^{2}=\frac{133}{36}
Tauwehea x^{2}+\frac{1}{3}x+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{133}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{6}=\frac{\sqrt{133}}{6} x+\frac{1}{6}=-\frac{\sqrt{133}}{6}
Whakarūnātia.
x=\frac{\sqrt{133}-1}{6} x=\frac{-\sqrt{133}-1}{6}
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.