Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+3x-10=0
Whakawehea ngā taha e rua ki te 3.
a+b=3 ab=1\left(-10\right)=-10
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,10 -2,5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
-1+10=9 -2+5=3
Tātaihia te tapeke mō ia takirua.
a=-2 b=5
Ko te otinga te takirua ka hoatu i te tapeke 3.
\left(x^{2}-2x\right)+\left(5x-10\right)
Tuhia anō te x^{2}+3x-10 hei \left(x^{2}-2x\right)+\left(5x-10\right).
x\left(x-2\right)+5\left(x-2\right)
Tauwehea te x i te tuatahi me te 5 i te rōpū tuarua.
\left(x-2\right)\left(x+5\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-5
Hei kimi otinga whārite, me whakaoti te x-2=0 me te x+5=0.
3x^{2}+9x-30=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-9±\sqrt{9^{2}-4\times 3\left(-30\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 9 mō b, me -30 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 3\left(-30\right)}}{2\times 3}
Pūrua 9.
x=\frac{-9±\sqrt{81-12\left(-30\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-9±\sqrt{81+360}}{2\times 3}
Whakareatia -12 ki te -30.
x=\frac{-9±\sqrt{441}}{2\times 3}
Tāpiri 81 ki te 360.
x=\frac{-9±21}{2\times 3}
Tuhia te pūtakerua o te 441.
x=\frac{-9±21}{6}
Whakareatia 2 ki te 3.
x=\frac{12}{6}
Nā, me whakaoti te whārite x=\frac{-9±21}{6} ina he tāpiri te ±. Tāpiri -9 ki te 21.
x=2
Whakawehe 12 ki te 6.
x=-\frac{30}{6}
Nā, me whakaoti te whārite x=\frac{-9±21}{6} ina he tango te ±. Tango 21 mai i -9.
x=-5
Whakawehe -30 ki te 6.
x=2 x=-5
Kua oti te whārite te whakatau.
3x^{2}+9x-30=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}+9x-30-\left(-30\right)=-\left(-30\right)
Me tāpiri 30 ki ngā taha e rua o te whārite.
3x^{2}+9x=-\left(-30\right)
Mā te tango i te -30 i a ia ake anō ka toe ko te 0.
3x^{2}+9x=30
Tango -30 mai i 0.
\frac{3x^{2}+9x}{3}=\frac{30}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{9}{3}x=\frac{30}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+3x=\frac{30}{3}
Whakawehe 9 ki te 3.
x^{2}+3x=10
Whakawehe 30 ki te 3.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=10+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=10+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+3x+\frac{9}{4}=\frac{49}{4}
Tāpiri 10 ki te \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{49}{4}
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=\frac{7}{2} x+\frac{3}{2}=-\frac{7}{2}
Whakarūnātia.
x=2 x=-5
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.