Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=7 ab=3\left(-6\right)=-18
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,18 -2,9 -3,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -18.
-1+18=17 -2+9=7 -3+6=3
Tātaihia te tapeke mō ia takirua.
a=-2 b=9
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(3x^{2}-2x\right)+\left(9x-6\right)
Tuhia anō te 3x^{2}+7x-6 hei \left(3x^{2}-2x\right)+\left(9x-6\right).
x\left(3x-2\right)+3\left(3x-2\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(3x-2\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi 3x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
3x^{2}+7x-6=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 3\left(-6\right)}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-7±\sqrt{49-4\times 3\left(-6\right)}}{2\times 3}
Pūrua 7.
x=\frac{-7±\sqrt{49-12\left(-6\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-7±\sqrt{49+72}}{2\times 3}
Whakareatia -12 ki te -6.
x=\frac{-7±\sqrt{121}}{2\times 3}
Tāpiri 49 ki te 72.
x=\frac{-7±11}{2\times 3}
Tuhia te pūtakerua o te 121.
x=\frac{-7±11}{6}
Whakareatia 2 ki te 3.
x=\frac{4}{6}
Nā, me whakaoti te whārite x=\frac{-7±11}{6} ina he tāpiri te ±. Tāpiri -7 ki te 11.
x=\frac{2}{3}
Whakahekea te hautanga \frac{4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{18}{6}
Nā, me whakaoti te whārite x=\frac{-7±11}{6} ina he tango te ±. Tango 11 mai i -7.
x=-3
Whakawehe -18 ki te 6.
3x^{2}+7x-6=3\left(x-\frac{2}{3}\right)\left(x-\left(-3\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{2}{3} mō te x_{1} me te -3 mō te x_{2}.
3x^{2}+7x-6=3\left(x-\frac{2}{3}\right)\left(x+3\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
3x^{2}+7x-6=3\times \frac{3x-2}{3}\left(x+3\right)
Tango \frac{2}{3} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
3x^{2}+7x-6=\left(3x-2\right)\left(x+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 3 me te 3.