Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}+7x-20=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 3\left(-20\right)}}{2\times 3}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 3 mō te a, te 7 mō te b, me te -20 mō te c i te ture pūrua.
x=\frac{-7±17}{6}
Mahia ngā tātaitai.
x=\frac{5}{3} x=-4
Whakaotia te whārite x=\frac{-7±17}{6} ina he tōrunga te ±, ina he tōraro te ±.
3\left(x-\frac{5}{3}\right)\left(x+4\right)>0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-\frac{5}{3}<0 x+4<0
Kia tōrunga te otinga, me tōraro tahi te x-\frac{5}{3} me te x+4, me tōrunga tahi rānei. Whakaarohia te tauira ina he tōraro tahi te x-\frac{5}{3} me te x+4.
x<-4
Te otinga e whakaea i ngā koreōrite e rua ko x<-4.
x+4>0 x-\frac{5}{3}>0
Whakaarohia te tauira ina he tōrunga tahi te x-\frac{5}{3} me te x+4.
x>\frac{5}{3}
Te otinga e whakaea i ngā koreōrite e rua ko x>\frac{5}{3}.
x<-4\text{; }x>\frac{5}{3}
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.