Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}=3-7
Tangohia te 7 mai i ngā taha e rua.
3x^{2}=-4
Tangohia te 7 i te 3, ka -4.
x^{2}=-\frac{4}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{2\sqrt{3}i}{3} x=-\frac{2\sqrt{3}i}{3}
Kua oti te whārite te whakatau.
3x^{2}+7-3=0
Tangohia te 3 mai i ngā taha e rua.
3x^{2}+4=0
Tangohia te 3 i te 7, ka 4.
x=\frac{0±\sqrt{0^{2}-4\times 3\times 4}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\times 4}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\times 4}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{-48}}{2\times 3}
Whakareatia -12 ki te 4.
x=\frac{0±4\sqrt{3}i}{2\times 3}
Tuhia te pūtakerua o te -48.
x=\frac{0±4\sqrt{3}i}{6}
Whakareatia 2 ki te 3.
x=\frac{2\sqrt{3}i}{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{3}i}{6} ina he tāpiri te ±.
x=-\frac{2\sqrt{3}i}{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{3}i}{6} ina he tango te ±.
x=\frac{2\sqrt{3}i}{3} x=-\frac{2\sqrt{3}i}{3}
Kua oti te whārite te whakatau.