Whakaoti mō x
x=-4
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+2x-8=0
Whakawehea ngā taha e rua ki te 3.
a+b=2 ab=1\left(-8\right)=-8
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,8 -2,4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -8.
-1+8=7 -2+4=2
Tātaihia te tapeke mō ia takirua.
a=-2 b=4
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(x^{2}-2x\right)+\left(4x-8\right)
Tuhia anō te x^{2}+2x-8 hei \left(x^{2}-2x\right)+\left(4x-8\right).
x\left(x-2\right)+4\left(x-2\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(x-2\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-4
Hei kimi otinga whārite, me whakaoti te x-2=0 me te x+4=0.
3x^{2}+6x-24=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\times 3\left(-24\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 6 mō b, me -24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 3\left(-24\right)}}{2\times 3}
Pūrua 6.
x=\frac{-6±\sqrt{36-12\left(-24\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-6±\sqrt{36+288}}{2\times 3}
Whakareatia -12 ki te -24.
x=\frac{-6±\sqrt{324}}{2\times 3}
Tāpiri 36 ki te 288.
x=\frac{-6±18}{2\times 3}
Tuhia te pūtakerua o te 324.
x=\frac{-6±18}{6}
Whakareatia 2 ki te 3.
x=\frac{12}{6}
Nā, me whakaoti te whārite x=\frac{-6±18}{6} ina he tāpiri te ±. Tāpiri -6 ki te 18.
x=2
Whakawehe 12 ki te 6.
x=-\frac{24}{6}
Nā, me whakaoti te whārite x=\frac{-6±18}{6} ina he tango te ±. Tango 18 mai i -6.
x=-4
Whakawehe -24 ki te 6.
x=2 x=-4
Kua oti te whārite te whakatau.
3x^{2}+6x-24=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}+6x-24-\left(-24\right)=-\left(-24\right)
Me tāpiri 24 ki ngā taha e rua o te whārite.
3x^{2}+6x=-\left(-24\right)
Mā te tango i te -24 i a ia ake anō ka toe ko te 0.
3x^{2}+6x=24
Tango -24 mai i 0.
\frac{3x^{2}+6x}{3}=\frac{24}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{6}{3}x=\frac{24}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+2x=\frac{24}{3}
Whakawehe 6 ki te 3.
x^{2}+2x=8
Whakawehe 24 ki te 3.
x^{2}+2x+1^{2}=8+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=8+1
Pūrua 1.
x^{2}+2x+1=9
Tāpiri 8 ki te 1.
\left(x+1\right)^{2}=9
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=3 x+1=-3
Whakarūnātia.
x=2 x=-4
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}