Whakaoti mō x
x=\frac{\sqrt{15}}{3}-1\approx 0.290994449
x=-\frac{\sqrt{15}}{3}-1\approx -2.290994449
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}+6x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\times 3\left(-2\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 6 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 3\left(-2\right)}}{2\times 3}
Pūrua 6.
x=\frac{-6±\sqrt{36-12\left(-2\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-6±\sqrt{36+24}}{2\times 3}
Whakareatia -12 ki te -2.
x=\frac{-6±\sqrt{60}}{2\times 3}
Tāpiri 36 ki te 24.
x=\frac{-6±2\sqrt{15}}{2\times 3}
Tuhia te pūtakerua o te 60.
x=\frac{-6±2\sqrt{15}}{6}
Whakareatia 2 ki te 3.
x=\frac{2\sqrt{15}-6}{6}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{15}}{6} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{15}.
x=\frac{\sqrt{15}}{3}-1
Whakawehe -6+2\sqrt{15} ki te 6.
x=\frac{-2\sqrt{15}-6}{6}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{15}}{6} ina he tango te ±. Tango 2\sqrt{15} mai i -6.
x=-\frac{\sqrt{15}}{3}-1
Whakawehe -6-2\sqrt{15} ki te 6.
x=\frac{\sqrt{15}}{3}-1 x=-\frac{\sqrt{15}}{3}-1
Kua oti te whārite te whakatau.
3x^{2}+6x-2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}+6x-2-\left(-2\right)=-\left(-2\right)
Me tāpiri 2 ki ngā taha e rua o te whārite.
3x^{2}+6x=-\left(-2\right)
Mā te tango i te -2 i a ia ake anō ka toe ko te 0.
3x^{2}+6x=2
Tango -2 mai i 0.
\frac{3x^{2}+6x}{3}=\frac{2}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{6}{3}x=\frac{2}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+2x=\frac{2}{3}
Whakawehe 6 ki te 3.
x^{2}+2x+1^{2}=\frac{2}{3}+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=\frac{2}{3}+1
Pūrua 1.
x^{2}+2x+1=\frac{5}{3}
Tāpiri \frac{2}{3} ki te 1.
\left(x+1\right)^{2}=\frac{5}{3}
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{5}{3}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\frac{\sqrt{15}}{3} x+1=-\frac{\sqrt{15}}{3}
Whakarūnātia.
x=\frac{\sqrt{15}}{3}-1 x=-\frac{\sqrt{15}}{3}-1
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}