Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}+6x=12
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
3x^{2}+6x-12=12-12
Me tango 12 mai i ngā taha e rua o te whārite.
3x^{2}+6x-12=0
Mā te tango i te 12 i a ia ake anō ka toe ko te 0.
x=\frac{-6±\sqrt{6^{2}-4\times 3\left(-12\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 6 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 3\left(-12\right)}}{2\times 3}
Pūrua 6.
x=\frac{-6±\sqrt{36-12\left(-12\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-6±\sqrt{36+144}}{2\times 3}
Whakareatia -12 ki te -12.
x=\frac{-6±\sqrt{180}}{2\times 3}
Tāpiri 36 ki te 144.
x=\frac{-6±6\sqrt{5}}{2\times 3}
Tuhia te pūtakerua o te 180.
x=\frac{-6±6\sqrt{5}}{6}
Whakareatia 2 ki te 3.
x=\frac{6\sqrt{5}-6}{6}
Nā, me whakaoti te whārite x=\frac{-6±6\sqrt{5}}{6} ina he tāpiri te ±. Tāpiri -6 ki te 6\sqrt{5}.
x=\sqrt{5}-1
Whakawehe -6+6\sqrt{5} ki te 6.
x=\frac{-6\sqrt{5}-6}{6}
Nā, me whakaoti te whārite x=\frac{-6±6\sqrt{5}}{6} ina he tango te ±. Tango 6\sqrt{5} mai i -6.
x=-\sqrt{5}-1
Whakawehe -6-6\sqrt{5} ki te 6.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Kua oti te whārite te whakatau.
3x^{2}+6x=12
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{3x^{2}+6x}{3}=\frac{12}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{6}{3}x=\frac{12}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+2x=\frac{12}{3}
Whakawehe 6 ki te 3.
x^{2}+2x=4
Whakawehe 12 ki te 3.
x^{2}+2x+1^{2}=4+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=4+1
Pūrua 1.
x^{2}+2x+1=5
Tāpiri 4 ki te 1.
\left(x+1\right)^{2}=5
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\sqrt{5} x+1=-\sqrt{5}
Whakarūnātia.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Me tango 1 mai i ngā taha e rua o te whārite.
3x^{2}+6x=12
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
3x^{2}+6x-12=12-12
Me tango 12 mai i ngā taha e rua o te whārite.
3x^{2}+6x-12=0
Mā te tango i te 12 i a ia ake anō ka toe ko te 0.
x=\frac{-6±\sqrt{6^{2}-4\times 3\left(-12\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 6 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 3\left(-12\right)}}{2\times 3}
Pūrua 6.
x=\frac{-6±\sqrt{36-12\left(-12\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-6±\sqrt{36+144}}{2\times 3}
Whakareatia -12 ki te -12.
x=\frac{-6±\sqrt{180}}{2\times 3}
Tāpiri 36 ki te 144.
x=\frac{-6±6\sqrt{5}}{2\times 3}
Tuhia te pūtakerua o te 180.
x=\frac{-6±6\sqrt{5}}{6}
Whakareatia 2 ki te 3.
x=\frac{6\sqrt{5}-6}{6}
Nā, me whakaoti te whārite x=\frac{-6±6\sqrt{5}}{6} ina he tāpiri te ±. Tāpiri -6 ki te 6\sqrt{5}.
x=\sqrt{5}-1
Whakawehe -6+6\sqrt{5} ki te 6.
x=\frac{-6\sqrt{5}-6}{6}
Nā, me whakaoti te whārite x=\frac{-6±6\sqrt{5}}{6} ina he tango te ±. Tango 6\sqrt{5} mai i -6.
x=-\sqrt{5}-1
Whakawehe -6-6\sqrt{5} ki te 6.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Kua oti te whārite te whakatau.
3x^{2}+6x=12
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{3x^{2}+6x}{3}=\frac{12}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{6}{3}x=\frac{12}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+2x=\frac{12}{3}
Whakawehe 6 ki te 3.
x^{2}+2x=4
Whakawehe 12 ki te 3.
x^{2}+2x+1^{2}=4+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=4+1
Pūrua 1.
x^{2}+2x+1=5
Tāpiri 4 ki te 1.
\left(x+1\right)^{2}=5
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\sqrt{5} x+1=-\sqrt{5}
Whakarūnātia.
x=\sqrt{5}-1 x=-\sqrt{5}-1
Me tango 1 mai i ngā taha e rua o te whārite.