Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}=12-6
Tangohia te 6 mai i ngā taha e rua.
3x^{2}=6
Tangohia te 6 i te 12, ka 6.
x^{2}=\frac{6}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=2
Whakawehea te 6 ki te 3, kia riro ko 2.
x=\sqrt{2} x=-\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3x^{2}+6-12=0
Tangohia te 12 mai i ngā taha e rua.
3x^{2}-6=0
Tangohia te 12 i te 6, ka -6.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-6\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-6\right)}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\left(-6\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{72}}{2\times 3}
Whakareatia -12 ki te -6.
x=\frac{0±6\sqrt{2}}{2\times 3}
Tuhia te pūtakerua o te 72.
x=\frac{0±6\sqrt{2}}{6}
Whakareatia 2 ki te 3.
x=\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{2}}{6} ina he tāpiri te ±.
x=-\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±6\sqrt{2}}{6} ina he tango te ±.
x=\sqrt{2} x=-\sqrt{2}
Kua oti te whārite te whakatau.