Whakaoti mō x
x=\frac{\sqrt{67}-5}{6}\approx 0.530892129
x=\frac{-\sqrt{67}-5}{6}\approx -2.197558795
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}+5x+\frac{1}{2}=4
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
3x^{2}+5x+\frac{1}{2}-4=4-4
Me tango 4 mai i ngā taha e rua o te whārite.
3x^{2}+5x+\frac{1}{2}-4=0
Mā te tango i te 4 i a ia ake anō ka toe ko te 0.
3x^{2}+5x-\frac{7}{2}=0
Tango 4 mai i \frac{1}{2}.
x=\frac{-5±\sqrt{5^{2}-4\times 3\left(-\frac{7}{2}\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 5 mō b, me -\frac{7}{2} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 3\left(-\frac{7}{2}\right)}}{2\times 3}
Pūrua 5.
x=\frac{-5±\sqrt{25-12\left(-\frac{7}{2}\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-5±\sqrt{25+42}}{2\times 3}
Whakareatia -12 ki te -\frac{7}{2}.
x=\frac{-5±\sqrt{67}}{2\times 3}
Tāpiri 25 ki te 42.
x=\frac{-5±\sqrt{67}}{6}
Whakareatia 2 ki te 3.
x=\frac{\sqrt{67}-5}{6}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{67}}{6} ina he tāpiri te ±. Tāpiri -5 ki te \sqrt{67}.
x=\frac{-\sqrt{67}-5}{6}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{67}}{6} ina he tango te ±. Tango \sqrt{67} mai i -5.
x=\frac{\sqrt{67}-5}{6} x=\frac{-\sqrt{67}-5}{6}
Kua oti te whārite te whakatau.
3x^{2}+5x+\frac{1}{2}=4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3x^{2}+5x+\frac{1}{2}-\frac{1}{2}=4-\frac{1}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
3x^{2}+5x=4-\frac{1}{2}
Mā te tango i te \frac{1}{2} i a ia ake anō ka toe ko te 0.
3x^{2}+5x=\frac{7}{2}
Tango \frac{1}{2} mai i 4.
\frac{3x^{2}+5x}{3}=\frac{\frac{7}{2}}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}+\frac{5}{3}x=\frac{\frac{7}{2}}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
x^{2}+\frac{5}{3}x=\frac{7}{6}
Whakawehe \frac{7}{2} ki te 3.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=\frac{7}{6}+\left(\frac{5}{6}\right)^{2}
Whakawehea te \frac{5}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{6}. Nā, tāpiria te pūrua o te \frac{5}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{7}{6}+\frac{25}{36}
Pūruatia \frac{5}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{67}{36}
Tāpiri \frac{7}{6} ki te \frac{25}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{6}\right)^{2}=\frac{67}{36}
Tauwehea x^{2}+\frac{5}{3}x+\frac{25}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{67}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{6}=\frac{\sqrt{67}}{6} x+\frac{5}{6}=-\frac{\sqrt{67}}{6}
Whakarūnātia.
x=\frac{\sqrt{67}-5}{6} x=\frac{-\sqrt{67}-5}{6}
Me tango \frac{5}{6} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}