Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}+3=0
Tangohia te 2 i te 5, ka 3.
3x^{2}=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}=\frac{-3}{3}
Whakawehea ngā taha e rua ki te 3.
x^{2}=-1
Whakawehea te -3 ki te 3, kia riro ko -1.
x=i x=-i
Kua oti te whārite te whakatau.
3x^{2}+3=0
Tangohia te 2 i te 5, ka 3.
x=\frac{0±\sqrt{0^{2}-4\times 3\times 3}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\times 3}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\times 3}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{-36}}{2\times 3}
Whakareatia -12 ki te 3.
x=\frac{0±6i}{2\times 3}
Tuhia te pūtakerua o te -36.
x=\frac{0±6i}{6}
Whakareatia 2 ki te 3.
x=i
Nā, me whakaoti te whārite x=\frac{0±6i}{6} ina he tāpiri te ±.
x=-i
Nā, me whakaoti te whārite x=\frac{0±6i}{6} ina he tango te ±.
x=i x=-i
Kua oti te whārite te whakatau.