Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}=10-5
Tangohia te 5 mai i ngā taha e rua.
3x^{2}=5
Tangohia te 5 i te 10, ka 5.
x^{2}=\frac{5}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{\sqrt{15}}{3} x=-\frac{\sqrt{15}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3x^{2}+5-10=0
Tangohia te 10 mai i ngā taha e rua.
3x^{2}-5=0
Tangohia te 10 i te 5, ka -5.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-5\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-5\right)}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\left(-5\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{60}}{2\times 3}
Whakareatia -12 ki te -5.
x=\frac{0±2\sqrt{15}}{2\times 3}
Tuhia te pūtakerua o te 60.
x=\frac{0±2\sqrt{15}}{6}
Whakareatia 2 ki te 3.
x=\frac{\sqrt{15}}{3}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{15}}{6} ina he tāpiri te ±.
x=-\frac{\sqrt{15}}{3}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{15}}{6} ina he tango te ±.
x=\frac{\sqrt{15}}{3} x=-\frac{\sqrt{15}}{3}
Kua oti te whārite te whakatau.