Whakaoti mō x
x = \frac{\sqrt{15}}{3} \approx 1.290994449
x = -\frac{\sqrt{15}}{3} \approx -1.290994449
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}=10-5
Tangohia te 5 mai i ngā taha e rua.
3x^{2}=5
Tangohia te 5 i te 10, ka 5.
x^{2}=\frac{5}{3}
Whakawehea ngā taha e rua ki te 3.
x=\frac{\sqrt{15}}{3} x=-\frac{\sqrt{15}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
3x^{2}+5-10=0
Tangohia te 10 mai i ngā taha e rua.
3x^{2}-5=0
Tangohia te 10 i te 5, ka -5.
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-5\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, 0 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\left(-5\right)}}{2\times 3}
Pūrua 0.
x=\frac{0±\sqrt{-12\left(-5\right)}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{0±\sqrt{60}}{2\times 3}
Whakareatia -12 ki te -5.
x=\frac{0±2\sqrt{15}}{2\times 3}
Tuhia te pūtakerua o te 60.
x=\frac{0±2\sqrt{15}}{6}
Whakareatia 2 ki te 3.
x=\frac{\sqrt{15}}{3}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{15}}{6} ina he tāpiri te ±.
x=-\frac{\sqrt{15}}{3}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{15}}{6} ina he tango te ±.
x=\frac{\sqrt{15}}{3} x=-\frac{\sqrt{15}}{3}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}